Abstract:
A fiber optic darkfield ring light with many angled fiber optic light lines with direct illumination in a very small package. The fiber optic darkfield ring light includes a base with multiple light heads and multiple light covers attached thereto, a main cover, an optional cord grip, and an optional hood. It incorporates multiple fiber optic line arrays positioned at low angle and used in conjunction with a strobe light source.
Abstract:
Fast on-line electro-optical detection of wafer defects by illuminating with a short light pulse from a repetitively pulsed laser, a section of the wafer while it is moved across the field of view of an imaging system, and imaging the moving wafer onto a focal plane assembly, optically forming a continuous surface of photo-detectors at the focal plane of the optical imaging system. The continuously moving wafer is illuminated by a laser pulse of duration significantly shorter than the pixel dwell time, such that there is effectively no image smear during the wafer motion. The laser pulse has sufficient energy and brightness to impart the necessary illumination to each sequentially inspected field of view required for creating an image of the inspected wafer die. A novel fiber optical illumination delivery system, which is effective in reducing the effects of source coherence is described. Other novel aspects of the system include a system for compensating for variations in the pulse energy of a Q-switched laser output, methods for autofocussing of the wafer imaging system, and novel methods for removal of repetitive features of the image by means of Fourier plane filtering, to enable easier detection of wafer defects.
Abstract:
Computation-saving techniques and stability-adding techniques provide for fast, accurate reconstructions of a time series of images involving large-scale 3D problems, such as real-time image recovery in an optical tomography imaging system. A system equation for a target medium (116) such as tissue is solved using a Normalized Difference Method (NDM) (250). Because of the inherent stability of the NDM solutions, a weight matrix (W) of the system equation can be provided for a given point in a time series (220), then reused without recalculation at subsequent points. Further savings are achieved by decomposing W using singular value decomposition or direct matrix decomposition, transforming it to reduce its dimensions, and/or scaling it to achieve a more stable numerical solution. Values of measured energy (112) emerging from the target medium are back-substituted into the system equation for the different points to obtain the target medium properties.
Abstract:
Apparatus for detecting defects in a web of textile material as it is being drawn through an inspection zone. A header is arranged to project a line of light on the running web and a reflected light image from the web is sensed and analyzed for defects. The header includes a fiber bundle for producing a line of light and an optical element for collimating the light upon the web as it passes through the inspection zone.
Abstract:
A variable filter spectrophotometer, for use with sample and reference; has a main member, a filter unit, a drive, a detector, a light distribution system, and a clamping circuit. The main member defines first and second beam paths, which are intersected by the filter unit. The filter unit has filtering and opaque portions. The filter unit is continuously movable relative to the beam paths in a repeating cycle from a first filtering relation in which the filtering portion is interposed in the first beam path and the opaque portion completely blocks the second beam path, to a first dark relation in which both beam paths are blocked, to a second filtering relation in which the filtering portion is interposed in the second beam path and the first beam path is completely blocked, and to a second dark relation in which both beam paths are completely blocked. The filtering portion is variably transmissive along a direction of movement of the filter unit. The drive continuously moves the filter unit relative to the beam paths. The detector produces a signal responsive to light received. The light distribution system directs light separately to and from the sample and reference, to and from the beam paths, and to the detector. The clamping circuit clamps the signal produced by the detector during the filtering relations to the signal produced by the detector during the dark relations.
Abstract:
Optical analytical instruments to determine a physical parameter of a fluid, and methods of operation of such instruments, are shown. These employ a source of suitable optical radiation, a detector means, means defining a zone for the fluid, means defining an optical path from the radiation source through the fluid zone to the detector means, and reading and control circuitry. At least two readings of optical energy that has been influenced by the fluid are taken without there having occurred substantial change to the fluid. During one of the readings a filter of known absorbance is included in the optical path so that the respective reading represents a calibration reading. A calibration-value-determining means is constructed first to compare, effectively, the two readings to remove the effect of the fluid from the value of the calibration reading, second, to compare, effectively the residual value of the calibration reading to a known value based on the known absorbance of the filter, and, third, on the basis of the second comparison, to make a calibration adjustment based on values derived while the fluid sample remained unchanged in the fluid zone. Novel software implementations of the determinations are shown. Specific examples of instruments and methods implementing these features shown are a dual lamp, no-moving part in-line spectrophotometer, a no-moving part reflection colorimeter capable of on-line or off-line operation, a scatter or fluorescence detecting implementation and a turbidimeter.
Abstract:
Measurements of physical attributes such as dielectric film thickness that are susceptible to spectral analysis are accomplished rapidly and accurately by a spectrophotometric system in which a programmed digital computer operating concurrently with the optical scanning means automatically performs the calibrating, normalizing and data reducing functions that otherwise must be carried out as time-consuming human, mechanical or analog electronic operations. The control over the optical data handling operations exercised by the computer eliminates the need for mechanically or electronically adjusting the optical apparatus to meet changing system conditions, whether periodic or aperiodic. Source light is transmitted through a rotating variable-wavelength interference filter which acts during one-half of its cycle to transmit light of varying wavelength through a fiber-optic reference path directly to the optical data acquisition apparatus, while acting in the next half-cycle to transmit light of such varying wavelength indirectly to said data acquisition apparatus through a measurement path. In the present example, where film thickness is the attribute being measured, the measurement path comprises a bifurcated fiber-optic bundle, one branch of which is used to carry the light of variable wavelength to the sample, and the other branch of which carries light reflected from the sample to the aforesaid data acquisition apparatus. A computer program enables light passed through the reference path in one half-cyle to calibrate the system for measuring optical transmission or reflectance in the next half-cycle. Reduction of relative reflectance data to absolute reflectance data (needed for the accurate determination of film thickness) is accomplished by additional computer programs whose algorithms are based upon the discovery that all graphs of absolute reflectance versus wavelength for film samples of a given material having different thicknesses are bounded by a common pair of wave envelopes.
Abstract:
A method of analysing a sample in the form of a droplet provided on a sample-receiving surface includes providing a light source and a detector in a housing, positioning said sample-receiving surface in or on the housing, and focussing an incident beam of light to a focal point in the vicinity of the sample. Light is detected from the sample resulting from an interaction with the sample, the sample-receiving surface, or the atmosphere surrounding the sample. At least one parameter of the detected light is measured, and the sample-receiving surface is translated relative to the housing such that the focal point is at a different region of the sample, the sample-receiving surface, or the atmosphere surrounding the sample. The step of measuring one or more parameters of the detected light is repeated following the translating step.
Abstract:
The disclosure herein provides a device, a method and a computer-readable storage medium for quantitative phase imaging, and relates to the field of quantitative phase imaging. The specific implementation scheme is: Obtain a multiplexed interferogram of the sample, where the multiplexed interferogram is a sample beam composed of at least two beams with different wavelengths to illuminate the sample and penetrate into the cube beam splitter Combine at least two beams with different wavelengths as the reference beam, and the combined beam is the imaging image sampled by the camera; and perform phase retrieval on the multiplexed interference image to obtain each beam of the sample in the composite sample beam The phase map at the wavelength of Using the embodiments of the disclosure herein, one imaging acquisition and one phase retrieval are to acquire the phase maps of at least two wavelength channels.
Abstract:
Provided is a fluorescence reading device capable of narrowing a distance between a lens unit and an observation object to a distance according to a focal length of a refractive index distribution type lens and focusing fluorescence emitted from the observation object on detecting unit without blurring.Optical fiber sub-bundles equivalent to a light guide unit are buried in lens holding parts of a lens unit. Emission ends of the optical fiber sub-bundles are exposed to upper surfaces of the lens holding parts that face the observation object holding unit. The optical fiber sub-bundles guide the excitation light emitted from the light source and radiate the guided excitation light toward the surface of an observation object that faces the lens unit.