Abstract:
The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
Abstract:
The present teachings provide a method of controlling a remote vehicle having an end effector and an image sensing device. The method includes obtaining an image of an object with the image sensing device, determining a ray from a focal point of the image to the object based on the obtained image, positioning the end effector of the remote vehicle to align with the determined ray, and moving the end effector along the determined ray to approach the object.
Abstract:
The robotic leader-follower navigation and fleet management control method implements SLAM in a group leader of a nonholonomic group of autonomous robots, while, at the same time, executing a potential field control strategy in follower members of the group.
Abstract:
Methods, systems, and devices are disclosed to facilitate operation of a network. First network state data descriptive of a first network state is received. The first network data includes network demand associated with nodes of a dynamic network, where the nodes of the dynamic network include at least one movable node. The first network data also includes a node state of each node of the dynamic network. At least one first link is automatically established between two or more nodes of the dynamic network to satisfy at least a portion of the network demand. Link data is generated where the link data is descriptive of node utilization, the at least one first link, and assignment of the portion of the network demand to the at least one first link. One or more changes to the dynamic network are modeled based on the link data to identify a second network state, wherein the second network state satisfies a greater quantity of the network demand than the first network state.
Abstract:
A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
Abstract:
An operator control unit having a user interface that allows a user to control a remote vehicle, the operator control unit comprising: a transmission unit configured to transmit data to the remote vehicle; a receiver unit configured to receive data from the remote vehicle, the data received from the remote vehicle comprising image data captured by the remote vehicle; and a display unit configured to display a user interface comprising the image data received from the remote vehicle and icons representing a plurality of controllable elements of the remote vehicle, and configured to allow the user to input a control command to control at least one of the plurality of controllable elements. Inputting a control command to control the at least one controllable element comprises selecting the icon representing the at least one controllable element, inputting an action for the at least one controllable element, and requesting that the at least one controllable element performs the action.
Abstract:
An operator control unit includes a user interface that allows a user to control a remote vehicle, a transmission unit configured to transmit data to the remote vehicle, and a receiver unit configured to receive data from the remote vehicle. The data received from the remote vehicle includes image data captured by the remote vehicle. The operator control unit includes a display unit configured to display the user interface including the image data received from the remote vehicle and icons representing a plurality of controllable elements of the remote vehicle, and configured to allow the user to input a control command to control at least one of the plurality of controllable elements.
Abstract:
A simultaneous localization and map building method of a mobile robot including an omni-directional camera. The method includes acquiring an omni-directional image from the omni-directional camera, dividing the obtained omni-directional image into upper and lower images according to a preset reference to generate a first image, which is the lower image, and a second image, which is the upper image, extracting feature points from the first image and calculating visual odometry information calculating visual odometry information to track locations of the extracted feature points based on a location of the omni-directional camera, and performing localization and map building of the mobile robot using the calculated visual odometry information and the second image as an input of an extended Kalman filter.
Abstract:
A method for returning a moving body in a moving body returning apparatus includes detecting a remote control signal from a remote controlling apparatus; acquiring data corresponding to a reference direction to return the moving body when the control relevant to the remote control signal is not feasible; and carrying out a returning control to return the moving body to an initial starting location using the data relevant to the reference direction. Further, the method includes stopping the returning control and activating the remote control signal of the remote controlling apparatus when the moving body arrives at the initial starting location.
Abstract:
A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialog with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.