Abstract:
Disclosed is an electrode for an electron source, a method for producing the same, and an electronic tube using the same which provide a decreased thickness of an electron emitting source, and an improved current distribution percentage. The electronic tube comprises a substrate, an electron emitting source area formed on the substrate, and a shield area around the electron emitting area. The shield area is formed of a material that does not produce an electron emitting source, when the electron emitting source is produced by a dry method. As a result, if a space between an electron drawing electrode and the electrode for the electron source is narrow, the percentage of anode current increases in the total current, thereby improving the current distribution percentage.
Abstract:
A high power switching apparatus comprises an annular cathode having a surface capable of emitting a hollow electron beam therefrom and an anode cavity spaced from said cathode. The cavity has an annular opening smaller in dimension than a corresponding internal dimension that defines the cavity to provide a Faraday cage collector of the hollow electron beam. A control electrode, disposed between the cathode and the anode cavity in a non-intercepting position relative to the hollow electron beam, provides a controlling electric field region for modulation of the hollow electron beam. Arc suppressing electrodes, at approximately the same potential as the cathode, are disposed between the control electrode and the anode. An intermediate high voltage electrode, disposed between the arc suppressing electrodes and the anode cavity in a non-intercepting position relative to the hollow electron beam, provides a controlling electric field region for channeling of the hollow electron beam. The intermediate high voltage electrode maintains a positive voltage with respect to the cathode in order to provide an intermediate voltage step between the cathode and the anode in the off state and to channel the hollow electron beam towards the anode in the on state. A voltage, positive with respect to the cathode, is applied to the control electrode in order to draw the hollow electron beam from the emitting surface of the cathode and into the anode. The potential of the anode is generally positive with respect to the cathode, however, it need not be at a potential as high as that of the control electrode, especially when electrons are being drawn from the cathode.
Abstract:
An electron tube with concentric, cylindrical electrodes has at least one meshed type of grid, a mesh being defined by several rods in contact by their ends, each point of contact forming a node. In order to limit the grid current, the surface area of a node is reduced. Only three rods leave each node. The meshes are hexagonal.
Abstract:
A vacuum tube includes a cylindrical cathode around which a frusto-conical control grid extends. The control grid, which is made out of Phosnic bronze, has its larger diameter end attached to the smaller end of a first hollow truncated copper cone. A cylindrical Phosnic bronze screen grid extends coaxially around the control grid. One end of the screen grid is attached to the smaller diameter end of a second hollow truncated cone. The second cone extends around the first cone and is made out of a copper clad alloy of cobalt, nickel and iron. An anode encircles the screen grid.
Abstract:
A method of manufacturing an article with integral active electronic component comprising: using an additive manufacturing process to: a) form a non-electrically conductive substrate; b) form a non-electrically conductive perforated layer having an aperture; c) form electrically conductive anode and cathode elements spaced in the aperture; d) deposit a conductive electrical connection to each of the elements suitable for imparting an electrical potential difference between the elements; e) form a non-electrically conductive sealing layer atop the perforated layer so as to retain and seal the aperture in the perforated layer.
Abstract:
A vacuum tube includes a filament and two pairs of a grid and an anode. The filament is tensioned linearly and emits thermoelectrons. Both of the anodes are formed on a same face on a planar substrate. The filament is arranged parallel to the planar substrate at a position facing both of the anodes. Each of the grids is arranged, such that the grid faces the anode of a same pair at a first predetermined distance from the anode and has a second predetermined distance from the filament, between the anode and the filament. The vacuum tube further includes an intermediate filament fixing part fixing the filament at a position corresponding to an intermediate point between the anodes of the two pairs.