Abstract:
A field emission cathode is provided which includes a substrate and a conductive layer disposed adjacent the substrate. An electrically resistive pillar is disposed adjacent the conductive layer, the resistive pillar having a substantially flat surface spaced from and substantially parallel to the substrate. A layer of diamond is disposed adjacent the flat surface of the resistive pillar.
Abstract:
A super high resolution cold cathode fluorescent display (CFD) utilizes an anode with cathodoluminescent means, a cathode with field emission cathode group array, a glass like spacer plate structure providing an array of funnel-shaped channels. Each channel has a narrow aperture which serves as a pin hole for passage of electrons between the cathodes and anode. The display uses a circuit for generating a strong electric field between the anode and cathode in the array of channels to take advantage of the pin hole imaging effect to produce high resolution, full color images for the display.
Abstract:
A bipolar grid may be positioned between a cathode and an anode. The bipolar grid may receive a positive grid voltage that corresponds to a voltage in an electric field between the cathode and the anode such that the grid does not interfere with an electron beam generated by an electron emitter of the cathode. The bipolar grid may receive a negative grid voltage to isolate the electron emitter such that the electron beam does not reach the anode.
Abstract:
The invention relates to an optically-controlled field-emission cathode, comprising a substrate (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) having at least one conducting surface (11, 21, 31, 41, 51, 61, 71, 81, 91, 101) and at least one conducting emitter element (16, 26, 36, 46, 56, 66, 76, 86, 96, 106) in the vicinity of a conducting surface, characterized in that it also comprises at least one photoconducting element (13, 23, 33, 43, 53, 63, 73, 83, 93, 103) electrically connected in series between at least one emitter element and a conducting surface of the substrate. Another subject of the invention is an amplifier tube comprising such a cathode. The application is for Vacuum tubes, in particular for microwave amplification, with a view for example to applications in telecommunications.
Abstract:
By using a large area cathode, an electron source can be made that can irradiate a large area more uniformly and more efficiently than currently available devices. The electron emitter can be a carbon film cold cathode, a microtip or some other emitter. It can be patterned. The cathode can be assembled with electrodes for scanning the electron source.
Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
By using a large area cathode, an electron source can be made that can irradiate a large area more uniformly and more efficiently than currently available devices. The electron emitter can be a carbon film cold cathode, a microtip or some other emitter. It can be patterned. The cathode can be assembled with electrodes for scanning the electron source.
Abstract:
A field emission cathode is provided which includes a substrate and a conductive layer desposed adjacent the substrate. An electrically resistive pillar is disposed adjacent the conductive layer, the resistive pillar having a substantially flat surface spaced from and substantially parallel to the substrate. A layer of diamond is disposed adjacent the surface of the resistive pillar.
Abstract:
A field emission display includes a first substrate; a plurality of gate electrodes formed on the first substrate in a predetermined pattern; an insulation layer formed covering the gate electrodes over an entire surface of the first substrate; a plurality of cathode electrodes formed on the insulation layer in a predetermined pattern, a plurality of emitters formed on the cathode electrodes; a plurality of counter electrodes formed on the insulation layer at a predetermined distance from the emitters and in a state of electrical connection to the gate electrodes, the counter electrodes forming an electric field directed toward the emitters; a second substrate provided at a predetermined distance from the first substrate and sealed in a vacuum state with the first substrate; an anode electrode formed on a surface of the second substrate opposing the first substrate; and a plurality of phosphor layers formed over the anode electrode in a predetermined pattern.
Abstract:
Strips of field emitters arranged in rows overlap grid electrodes when viewed in the viewing direction to define pixel dots. Scanning electrical voltages are applied to the rows of field emitters to perform scanning and data potentials are applied to the grid electrodes to control the brightness of the display. Potentials applied to the grid electrodes also focus the electrons from the field emitters. A metal mesh with grid electrodes fabricated thereon to form an integrated structure greatly simplifies the manufacture of the display.