Abstract:
A support structure for x-ray windows including carbon composite ribs, comprising carbon fibers in a matrix. The support structure can comprise a support frame defining a perimeter and an aperture, a plurality of ribs comprising a carbon composite material extending across the aperture of the support frame and carried by the support frame, and openings between the plurality of ribs. A film can be disposed over, carried by, and span the plurality of ribs and disposed over and span the openings.
Abstract:
An X-ray imaging apparatus is disclosed. The apparatus includes a radiator housing, an X-ray tube, a source of X-rays and at least one filtration material disposed on the X-ray tube. The X-ray tube is rotatable about a longitudinal axis and is disposed at least partially within the radiator housing. The source of X-rays emits at least one X-ray beam at least partially through the X-ray tube. The X-ray beam exits the X-ray tube at an annular X-ray window. The filtration material at least partially covers a portion of the annular X-ray window. Rotation of the X-ray tube causes the X-ray beam to pass through a plurality of locations in the annular X-ray window and at least a portion of the X-ray beam is filtered by the filtration material.
Abstract:
An X-ray imaging apparatus is disclosed. The apparatus includes a radiator housing, an X-ray tube, a source of X-rays and at least one filtration material disposed on the X-ray tube. The X-ray tube is rotatable about a longitudinal axis and is disposed at least partially within the radiator housing. The source of X-rays emits at least one X-ray beam at least partially through the X-ray tube. The X-ray beam exits the X-ray tube at an annular X-ray window. The filtration material at least partially covers a portion of the annular X-ray window. Rotation of the X-ray tube causes the X-ray beam to pass through a plurality of locations in the annular X-ray window and at least a portion of the X-ray beam is filtered by the filtration material.
Abstract:
In an x-ray tube comprising a housing, which define an enclosure, a cathode arrangement, which emits electrons within the enclosure, and a window, which seals an end of the enclosure, the window comprises a carrier layer and, on a side of the carrier layer that faces the enclosure, a layered anode arrangement having certain characteristics.
Abstract:
A radiation window device to transmit radiation as part of an x-ray source or detector includes a support to be subject to a substantial vacuum, and an opening configured to transmit radiation. A film is mounted directly on the support across the opening, and has a material and a thickness selected to transmit soft x-rays. An adhesive directly adheres the film to the support. A coating covers exposed portions of at least one of the evacuated or ambient sides of the film, and covers a portion of the support surrounding the film. The support, film and adhesive form a vacuum tight assembly capable of maintaining the substantial vacuum when one side is subject to the substantial vacuum. In addition, the vacuum tight assembly can withstand a temperature of greater than approximately 250 degrees Celsius.
Abstract:
A radiation window device to transmit radiation as part of an x-ray source or detector includes a support to be subject to a substantial vacuum, and an opening configured to transmit radiation. A film is mounted directly on the support across the opening, and has a material and a thickness selected to transmit soft x-rays. An adhesive directly adheres the film to the support. A coating covers exposed portions of at least one of the evacuated or ambient sides of the film, and covers a portion of the support surrounding the film. The support, film and adhesive form a vacuum tight assembly capable of maintaining the substantial vacuum when one side is subject to the substantial vacuum. In addition, the vacuum tight assembly can withstand a temperature of greater than approximately 250 degrees Celsius.
Abstract:
An X-ray window having a diamond X-ray transparent film, diamond reinforcing crosspieces and a substrate on which the diamond X-ray transparent film has been grown. As reinforcing crosspieces are made of diamond, no thermal stress is generated between the X-ray transparent film and the crosspieces. This mask excels in flatness, transmittance of X-rays, and strength.
Abstract:
The present invention is directed to an improved spectographic X-ray tube in which heat dissipation through the beryllium window of the X-ray tube is improved by way of a thin layer disposed on the inside of the beryllium window. The coating layer is of copper and disposed on the inside of the beryllium window for the best effects for improving heat dissipation by the window.
Abstract:
An anode of an X-ray tube, particularly for X-ray analysis, comprises at least two successive layers (7, 8 or 11, 10 or 13, 12) of anode material. A first layer (7, 11, 12) thereof consists mainly of an element having a comparatively low atomic number, such as scandium or chromium, while a second layer (8, 10, 13) consists mainly of an element having a comparatively high atomic number, such as molybdenum, tungsten or uranium. For the selection of a desired radiation spectrum, the tube voltage is selectively adjusted such that either or both layers are activated.
Abstract:
The x-ray windows herein can have low gas permeability, low outgassing, high strength, low visible and infrared light transmission, high x-ray flux, low atomic number materials, corrosion resistance, high reliability, and low-cost. The x-ray window can include a film 11 with a polymer layer 22 and a graphite layer 21. The film 11 can consist essentially of graphite and polymer. Most of the film 11 can be the graphite layer 21. The polymer layer 22 can be a small portion of the film 11.