Abstract:
The invention relates to an electron beam exposure apparatus for transferring a pattern onto the surface of a target, comprising: a beamlet generator for generating a plurality of electron beamlets; a modulation array for receiving said plurality of electron beamlets, comprising a plurality of modulators for modulating the intensity of an electron beamlet; a controller, connected to the modulation array for individually controlling the modulators, an adjustor, operationally connected to each modulator, for individually adjusting the control signal of each modulator; a focusing electron optimal system comprising an array of electrostatic lenses wherein each lens focuses a corresponding individual beamlet, which is transmitted by said modulation array, to a cross section smaller than 300 nm, and a target holder for holding a target with its exposure surface onto which the pattern is to be transferred in the first focal plane of the focusing electron optical system.
Abstract:
An electron gun comprising an electron emission cathode, a control electrode and an extractor wherein the electron emission cathode is mode of rare earth hexaboride and a tip of the electron emission cathode is located between the control electrode and the extractor.
Abstract:
A cathode ray tube and a plural beam electron gun therefor include a main lens that comprises a tubular focus grid G5 and a conductive coating on the inner surface of the tube neck. The neck coating extends from the region of focus grid G5 towards the faceplate of the cathode ray tube. Preferably, the exit of the focus grid G5 is non-planar and is curved or undulated and focus grid G5 includes an aperture plate intermediate its entrance and exit. The aperture plate preferably has an elliptical center beam opening and connected-semi-elliptical outer-beam openings, to better converge and focus the outer and center electron beams. Also preferably, the focus grid G5 is centrally located in the tube neck and at least partly surrounded by the conductive neck coating.
Abstract:
A radio frequency (RF) modulated electron gun includes a cathode, electrically coupled to operate as a source of charged particles, and a grid, positioned apart from the cathode. The grid and the cathode are electrically coupled to a grid voltage source and to a RF source. The grid voltage source places the grid at a first potential, and the RF source places the grid at a second potential selected to produce groups of the charged particles. The groups of charged particles are produced with each period of a signal received from the RF source.
Abstract:
A data storage device including a substrate, a data storage layer on the substrate, and a spin-polarized electron source. The data storage layer comprises a fixed number of atomic layers of a magnetic material which provide the data storage layer with a magnetic anisotropy perpendicular to a surface of the data storage layer. A data magnetic field is created in the data storage layer. The data magnetic field is polarized either in a first direction corresponding to a first data value or in a second direction corresponding to a second data value. Data is stored in the data storage layer by providing a spin-polarized electron having an electron magnetic field with a direction of polarization corresponding to one of the first and the second data values, the electron having a wavelength “characteristic” of unpaired electrons in the data storage layer which cause the magnetic moment of the material, and directing the spin-polarized electron at the data magnetic field to impart the direction of polarization of the electron magnetic field to the data magnetic field. Data is read from the data storage layer by directing the spin-polarized electron at a second wavelength at the data magnetic field and detecting a deflection or attraction of the spin-polarized electron by the data magnetic field. Alternatively, data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field so that the magnetic medium produces a secondary electron and then detecting certain characteristics of the secondary electron.
Abstract:
In a pulsed electron beam source based on the vacuum principle, comprising a vacuum diode having a multi-point emission cathode with a flange and a plurality of emission points, a control grid, a pulse generator, a magnetic compression unit consisting of field coils, a drift chamber, a target chamber and a synchronization unit, the multipoint emission cathode is embedded in a shield electrode, and the shield electrode is connected to the cathode base by way of a resistor which is so sized that the shield electrode is capable of freely floating.
Abstract:
A virtual remote cathode has the position of a space charge cloud associated with it fixed by the geometry of a fixed insulating plate. The plate can be made to accurate dimensions and hence the cathode to control grid dimension can be accurately controlled and will not change as a result of any mechanical, electrical or physical changes in the construction. The fixed insulating plate is located on a surface of the control grid facing the cathode.
Abstract:
A display system comprises a display screen including a matrix of display elements and a permanent magnet having an array of channels formed therein. Each channel corresponds to a different display element. Each display element comprises a phosphor target, an electron source and a device for controlling flow of electrons from the source through the corresponding channel in the magnet onto the target. Addressing device comprises first and second orthogonal conductors defining a grid. Each display element is located at the intersection of a different pair of first and second conductors. Each first conductor is connected to a first control electrode of the control device of each display element in a corresponding line of display elements and each second conductor is connected to a second control electrode of the control device of each display element in a corresponding line of display elements.
Abstract:
An electron source having a cathode and a permanent magnet having perforated channels extending between opposite poles of the magnet. Each channel forms electrons received from the cathode into an electron beam for guidance towards a target. The electron source has applications in a wide range of technologies, including display technology and printer technology.
Abstract:
A diode pulser is described which comprises a diode and an inductor connected in series, the impedance of the diode being controllable to suddenly increase the impedance to produce a high voltage pulse across the diode. The diode includes concentric electrodes forming a gap between them across which electrons move. To increase the impedance, a magnetic field is suddenly applied parallel to the electrode surfaces, to bend the electron paths so as to require a much higher voltage to move the electrons across the gap, the inductor creating such voltage to maintain the current flow for a brief time. The diode pulser is useful as a rapid-acting switch, and as a source of high energy electrons that are useful to generate X-rays, microwaves, and for other purposes.