Abstract:
Methods and systems for thermal ionization of a sample and formation of an ion beam are described. The systems incorporate a thermal ionization filament that is formed of a graphene-based material such as graphite, graphene, graphene oxide, reduced graphene oxide or combinations thereof. The filament material can be doped or chemically modified to control and tune the work function of the filament and improve ionization efficiency of a system incorporating the filament. The systems can be utilized in forming an ion beam for target bombardment or analysis via, e.g., mass spectrometry.
Abstract:
The invention relates to a cathode arrangement comprising: a cathode body housing an emission surface for emitting electrons in a longitudinal direction, wherein the emission surface is bounded by an emission perimeter; a focusing electrode at least partially enclosing the cathode body in a transversal direction and comprising an electron transmission aperture for focusing the electrons emitted by the emission surface, wherein the aperture is bounded by an aperture perimeter, wherein the cathode body is moveably arranged within the focusing electrode over a maximum transversal distance from an aligned position, and wherein the aperture perimeter transversally extends over the emission surface and beyond the emission perimeter over an overlap distance that exceeds the maximum transversal distance.
Abstract:
There is provided an emitter structure, a gas ion source including the emitter structure, and a focused ion beam system including the gas ion source. The emitter structure includes a pair of conductive pins which are fixed to a base member, a filament which is connected between the pair of conductive pins, and an emitter which is connected to the filament and has a sharp tip. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
A method for fabricating a sharpened needle-like emitter, the method including: electrolytically polishing an end portion of an electrically conductive emitter material so as to be tapered toward a tip portion thereof; performing a first etching in which the electrolytically polished part of the emitter material is irradiated with a charged-particle beam to form a pyramid-like sharpened part having a vertex including the tip portion; performing a second etching in which the tip portion is further sharpened through field-assisted gas etching, while observing a crystal structure at the tip portion by a field ion microscope and keeping the number of atoms at a leading edge of the tip portion at a predetermined number or less; and heating the emitter material to arrange the atoms at the leading edge of the tip portion of the sharpened part in a pyramid shape.
Abstract:
A Hall effect thruster including: a discharge channel with an open downstream end; a cathode situated outside the discharge channel; an injector system configured to inject atoms of gas into the discharge channel, the injector system situated at an upstream end of the discharge channel and also forming a cathode; a heater device configured to heat the cathode; a measurement mechanism measuring temperature of the heater device, and a regulator circuit regulating the temperature such that the heater device heats so long as its temperature is less than a threshold temperature from which the thruster is capable of starting, and ceases to heat shortly after the threshold temperature has been reached.
Abstract:
This invention relates to a filament for electron emission cathode which is employed in an electron microscope, a critical dimension examine tool, an electron beam lithograph machine, an electron beam tester and other electron beam related systems as an electron source. Embodiments of the present invention discloses method with which a Re (Rhenium) is used as heat source such that vibration issue of prior tungsten filament can be depressed.
Abstract:
An electron source producing an electron beam which is highly reliable and stable even when it is externally oscillated. The electron source comprises a cathode (1) having an electron emitting section which is so connected to be interposed between top ends of two filaments (3) which are respectively connected to two conductive pins (4) provided on an insulator member (5), an end of the cathode (1) which differs from the electron emitting section being fixed to the insulator member (5), wherein the two filaments (3) are being twofold symmetry with a center on a center axis of the cathode (1), and preferably, the end of the cathode (1) which differs from the electron emitting section is fixed to the insulator member (5) via a metallic member (6) brazed to the insulator member, and more preferably, a curved portion is provided to the filaments.
Abstract:
An object is to provide an electron emission cathode and an electron emission source using diamond and having a high brightness and a small energy width that are suitable for electron ray and electron beam devices and vacuum tubes, in particular, electron microscopes and electron beam exposure devices, and also electronic devices using such cathode and source. A diamond electron emission cathode according to the present invention has single crystal diamond in at least part thereof, the diamond electron emission cathode having a columnar shape formed by a sharpened acute section and a heating section, being provided with one electron emitting portion in the sharpened acute section, and being constituted of at least two types of semiconductors that differ in electric properties. One of the types constituting the semiconductors is an n-type semiconductor containing n-type impurities at 2×1015 cm3 or higher, the other one is a p-type semiconductor containing p-type impurities at 2×1015 cm−3 or higher, the p-type semiconductor and the n-type semiconductor are joined together, the heating section is energized parallel to the junction surface and directly heated by a pair of current introducing terminals, and some of the introduced electrons are emitted from the electron emitting portion.
Abstract translation:目的是提供使用金刚石的电子发射阴极和电子发射源,其具有适用于电子射线和电子束装置和真空管,特别是电子显微镜和电子束曝光装置的高亮度和小的能量宽度 ,以及使用这种阴极和源的电子设备。 根据本发明的金刚石电子发射阴极在其至少一部分中具有单晶金刚石,金刚石电子发射阴极具有由锐化尖锐部分形成的柱状形状和加热部分,在锐化部分中设置有一个电子发射部分 并且由电性能不同的至少两种类型的半导体构成。 构成半导体的种类之一是含有2×1015cm3以上的n型杂质的n型半导体,另一种是含有2×10 15 cm -3以上的p型杂质的p型半导体, p型半导体和n型半导体结合在一起,加热部分被平行于接合面激励并被一对电流引入端直接加热,并且一些引入的电子从电子发射部分发射。
Abstract:
An electron emitter assembly for use in an x-ray emitting device or other electron emitter-containing device is disclosed. In one embodiment, an x-ray tube is disclosed, including a vacuum enclosure that houses both an anode having a target surface, and a cathode positioned with respect to the anode. The cathode includes an electron emitter assembly for emitting a beam of electrons during tube operation. The electron emitter assembly comprises a refractory metal foil with a plurality of shaped rung structures for emitting an electron beam that maximizes flux while simultaneously focusing the electron beam in two dimensions. Focusing occurs primarily through an electrical field shaped by the electron emitter assembly and through balancing current density, electrical resistance, and heat loss through thermal conduction to control the regions that emit electrons. Furthermore, the refractory metal foil can be configured with a modified work function for preferential electron emission.
Abstract:
A method of making cathodes includes forming a first intermediate assembly having a current wire in juxtaposition with an outer mandrel wire and a basket wire wound around the first two wires. The first intermediate assembly is wound around a central mandrel to form a second intermediate assembly. Pulses of energy are used to produce an alloy solder joint between the current wire and the basket wire at selected locations. The second intermediate assembly is cut into segments, and the mandrels are removed. This results in a cathode having a coiled current wire and a basket wire wound around the current wire, with the basket wire being bonded to the current wire by the alloy solder joints. The cathode includes a central bore that is substantially free of the alloy solder joint.