Abstract:
An x-ray tube unit includes an x-ray tube unit housing, in which a vacuum housing is disposed, which includes a high-voltage component. The vacuum housing includes an insulating medium circulating in the x-ray tube unit housing flowing around it. Further, a cathode module and an anode are disposed in the vacuum housing, the cathode module lying at high voltage and including an emitter which emits electrons when heating current is fed to it. In addition, a potential difference is present between the cathode module and the anode for accelerating the emitted electrons. In accordance with an embodiment of the invention a high-voltage feed, a heating transformer and a radiation protection component are integrated into the high-voltage component, the high-voltage component being filled at least partly with an electrically-insulating encapsulation material. This produces a compact and installation-friendly x-ray tube unit which has high operational safety.
Abstract:
An X-ray tube can include: a cathode including an electron emitter that emits an electron beam; an anode configured to receive the electron beam; a first magnetic quadrupole between the cathode and the anode and having a first yoke with four first pole projections extending from the first yoke and oriented toward a central axis of the first yoke and each of the four first pole projections having a first quadrupole electromagnetic coil; a second magnetic quadrupole between the first magnetic quadrupole and the anode and having a second yoke with four second pole projections extending from the second yoke and oriented toward a central axis of the second yoke and each of the four second pole projections having a second quadrupole electromagnetic coil; and at least one steering coil collocated with a quadrupole on a pole projection.
Abstract:
An X-ray tube comprising: a cathode including an emitter; an anode; a first magnetic quadrupole formed on a first yoke and having a magnetic quadrupole gradient for focusing an electron beam in a first direction and defocusing the beam in a second direction; a second magnetic quadrupole formed on a second yoke and having a magnetic quadrupole gradient for focusing the electron beam in the second direction and defocusing the electron beam in the first direction; wherein a combination of the first and second magnetic quadrupoles provides a net focusing effect in both first and second directions of a focal spot of the electron beam; and a pair of opposing quadrupole electromagnetic coils having alternating current offset being configured to deflect the electron beam in order to shift the focal spot of the electron beam on a target.
Abstract:
An X-ray tube 10 with an anode 30 comprising at least a rod shaped body with a front wall having target area 32 as target for an electron beam 27 on its frontal side provides a high intensity of X-ray radiation if the anode 30 has at least one cavity extending to the front wall, the cavity having a coating 50 of at least one inorganic salt.
Abstract:
A mesh electrode adhesion structure includes: a substrate, and an opening defined in the substrate; a mesh electrode on the substrate, and a first combination groove defined in the mesh electrode; and an adhesion layer between the substrate and the mesh electrode. The mesh electrode includes: a mesh region corresponding to the opening defined in the substrate, and an adhesion region in which the first combination groove exposes the adhesion layer.
Abstract:
An electron gun having: a cathode for emitting electrons; a first Wehnelt electrode equipped with a first aperture through which electrons are allowed to pass; and a second Wehnelt electrode that is equipped with a second aperture disposed at a predetermined position with respect to the cathode and the first aperture, and that is furnished at a position closer to the cathode than the first Wehnelt electrode, wherein: the cathode and the second Wehnelt electrode are included within a single assembly constituting a unitary body; and the assembly is detachably attached to the first Wehnelt electrode. Replacement of the cathode can be performed by detaching the cathode unit from the first Wehnelt electrode, and then ejecting the cathode unit out from the Wehnelt cover. The emitter of the cathode can thereby be reliably positioned with respect to the second aperture.
Abstract:
Provided is an X-ray generating tube with improved withstand voltage property by a simple structure, the X-ray generating tube including a cathode connected to one opening of an insulating tube and an anode connected to the other opening, in which a resistive film having a lower sheet resistance value than that of the insulating tube is disposed on an outer periphery of the insulating tube, and the cathode and the anode are electrically connected to each other via the resistive film.
Abstract:
The invention relates to a radiation application apparatus for applying radiation at a location within an object. The radiation application apparatus comprises a transforming unit (2) for being arranged within the object at the location and for transforming ultrasound energy to electrical energy, and a radiation source (4) for being arranged within the object and for generating radiation (5) to be applied at the location within the object, wherein the radiation source (4) is driven by the electrical energy. Since the transforming unit transforms the ultrasound energy to electrical energy being used by the radiation source, it is not necessary to transfer electrical energy to the radiation source, i.e., for example, corresponding cables, which may have to be isolated, are not necessarily required. Insulation problems and corresponding safety problems, which may be present, if cables, in particular, corresponding high voltage cables, are used, can therefore be reduced.
Abstract:
An x-ray device utilizes a band of material to exchange charge through tribocharging within a chamber maintained at low fluid pressure. The charge is utilized to generate x-rays within the housing, which may pass through a window of the housing. Various contact rods may be used as part of the tribocharging process.
Abstract:
An electrically heated planar cathode for use in miniature x-ray tubes may be spiral design laser cut from a thin tantalum alloy ribbon foil (with grain stabilizing features). Bare ribbon is mounted to an aluminum nitride substrate in a manner that is puts the ribbon in minimal tension before it is machined into the spiral pattern. The spiral pattern can be optimized for electrical, thermal, and emission characteristics.