Abstract:
An arc suppression arrangement suppresses arcs in a gas discharge device that is operated with an alternating voltage from a power supply. The arc suppression arrangement includes an arc suppression device and an arc identification device that controls the arc suppression device. The arc suppression device includes at least one controllable resistor that is connected in series in an electrical line that extends from an alternating voltage source to an electrode of the gas discharge device. An arc can thereby be prevented from being provided with energy.
Abstract:
A silicon-based thin film depositing apparatus, including a plurality of transparent electrodes disposed to face corresponding counter electrodes with a space therebetween. Subsequently, while injecting a raw material gas from raw material gas injection orifices toward the supporting electrodes and also injecting a barrier gas from barrier gas injection orifices in the same direction as the direction in which the raw material gas is injected, the gases are discharged from a gas outlet, and thereby, the pressure in a chamber is controlled to a pressure of more than 1 kPa. Then, a DC pulse voltage is applied to each counter electrode to deposit a silicon-based thin film. A DC pulse voltage is applied to perform discharge. Therefore, even in a state where the distance between the electrodes is increased, plasma can be generated efficiently, and the in-plane distribution of film thickness can be improved.
Abstract:
An amorphous carbon film forming apparatus includes a supporting electrode that is connected to ground and supports a substrate, a counter electrode that is disposed so as to face the supporting electrode and has a mixed-gas injection orifice, a chamber containing the supporting electrode and the counter electrode, and a DC pulse generator having a pulse source that applies a DC pulse voltage between the supporting electrode and the counter electrode. An amorphous carbon film is formed by supplying a mixed gas between the supporting electrode and the counter electrode such that the percentage of the acetylene gas relative to the carrier gas is 0.05% by volume or more and 10% by volume or less, and by generating plasma while a DC pulse voltage having a pulse width of 0.1 μsec or more and 5.0 μsec or less is applied to the counter electrode.
Abstract:
A strongly-ionized plasma generator includes a chamber for confining a feed gas. An anode is positioned inside the chamber. A cathode assembly is positioned adjacent to the anode inside the chamber. An output of a pulsed power supply is electrically connected between the anode and the cathode assembly. The pulsed power supply comprising solid state switches that are controlled by micropulses generated by drivers. At least one of a pulse width and a duty cycle of the micropulses is varied so that the power supply generates a multi-step voltage waveform at the output having a low-power stage including a peak voltage and a rise time that is sufficient to generate a plasma from the feed gas and a transient stage including a peak voltage and a rise time that is sufficient to generate a more strongly-ionized plasma.
Abstract:
A silicon-based thin film mass-producing apparatus, including transparent electrodes placed to face in parallel to corresponding counter electrodes with a space therebetween, and silicon-based thin films are deposited on the transparent electrodes by feeding a raw material gas for depositing the silicon-based thin films into the chamber and by applying a DC pulse voltage to the counter electrodes to generate plasma. Unlike methods in which a radio frequency voltage is intermittently applied to perform discharge, a high plasma density distribution does not occur, and in-plane film thickness distribution does not occur. Furthermore, since the DC pulse voltage rises sharply, the ON period can be shortened. As a result, generation of a sheath ceases in the transient state before reaching the steady state, and the thickness of the sheath is small, which allows the space between the counter and transparent electrodes to decrease.
Abstract:
For determining a wave running time between a RF source in a plasma power supply device and a load connected to the plasma power supply device, an RF pulse is transmitted forwards from the RF source to the load. The pulses are reflected by the load and transmitted backwards to the power source. A return time measured on arrival of the pulse(s) at the inverter is used to determine a wave running time.
Abstract:
In a method of detecting arc discharge in a glow-discharge apparatus GD that has a high-frequency power source PS, a cutting pulse is output for time T1 to the high-frequency power source PS to stop a supply of power to the glow-discharge apparatus GD, when dVr/dt−dVf/dt increases over a first level, where Vf and Vr are a traveling-wave voltage and a reflected-wave voltage applied to the glow-discharge apparatus GD, respectively. Arc discharge is determined to have developed in the glow-discharge apparatus, when Vr/Vf increases to a second level or a higher level within a preset time To after the supply of power to the glow-discharge apparatus is stopped.
Abstract:
Methods and apparatus for plasma ion implantation with improved dopant profiles are provided. A plasma ion implantation system includes a process chamber, a plasma source to generate a plasma in the process chamber, a platen to hold the substrate in the process chamber and a pulse source to generate implant pulses to accelerate ions from the plasma into the substrate. In one aspect, the pulse source generates implant pulses having pulse widths that are sufficiently long to limit plasma ion implantation during a transient period at the start of each implant pulse to a small fraction of the total implanted dose. In another aspect, ions are generated in a region of the process chamber near a reference potential, such as ground, and are accelerated from the region of plasma generation to the platen. Plasma generation may be enabled after the start of each implant pulse and may be disabled before the end of each implant pulse.
Abstract:
This disclosure describes systems, methods, and apparatus for waveform control, comprising: a power supply having an input terminal, and at least one output terminal for coupling to a load; a controller; a variable inductor coupled to at least one of the output terminals, the variable inductor comprising a first magnetic core having a plurality of arms, including at least a first inductor arm and a first control arm, wherein an inductance winding having one or more turns is wound around the first inductor arm, and wherein a first control winding comprising one or more turns is wound around the first control arm; and a DC current source coupled to the first control arm and the controller, the controller configured to adjust a DC bias applied by the DC current source to the first control arm to control an output waveform at the at least one output terminal.