Abstract:
A mass spectrometer is disclosed comprising a RF confinement device, a beam expander and a Time of Flight mass analyzer. The beam expander is arranged to expand an ion beam emerging from the RF confinement device so that the ion beam is expanded to a diameter of at least 3 mm in the orthogonal acceleration extraction region of the Time of Flight mass analyzer.
Abstract:
A miniature time-of-flight mass spectrometer (TOF-MS) was developed for a NASA/ASTID program beginning 2008. The primary targeted application for this technology is the detection of non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity.
Abstract:
Certain embodiments described herein are directed to reflectron assemblies and methods of producing them. In some configurations, a reflectron comprising a plurality of lenses each comprising a planar body and comprising a plurality of separate and individual conductors spanning a central aperture from a first side to a second side of a first surface of the planar body is described. In some instances, the plurality of conductors are each substantially parallel to each other and are positioned in the same plane.
Abstract:
Certain embodiments described herein are directed to time of flight tubes comprising a cylindrical tube comprising an inner surface and an outer surface, the cylindrical tube comprising an effective thickness and sized and arranged to couple to and support a reflectron assembly inside the cylindrical tube. In some configurations, the cylindrical tube further comprises a conductive material disposed on the inner surface of the cylindrical tube, the conductive material present in an effective amount to provide a field free region for ions when the conductive material is charged.
Abstract:
A mass spectrometer is disclosed comprising a RF confinement device, a beam expander and a Time of Flight mass analyser. The beam expander is arranged to expand an ion beam emerging from the RF confinement device so that the ion beam is expanded to a diameter of at least 3 mm in the orthogonal acceleration extraction region of the Time of Flight mass analyser.
Abstract:
The present invention relates to the analytical electronics used to identify compositions and structures of substances, in particular, to the analyzers comprising at least one mass-spectrometer (MS) and may be applied in such fields as medicine, biology, gas and oil industry, metallurgy, energy, geochemistry, hydrology, ecology.Technical result provides the increase in MS resolution, gain in sensitivity, precision and measurement rates of substances compositions and structures concurrently with enhancement of analyzer functional capabilities, downsizing and mass reduction.In claimed invention the ion flux generation and its guiding are performed in off-axis single-flow mode; parallel multi-stage mode; through use of three-dimensional field with mean meridian surface including without limitation three-dimensional reflecting and dual-zoned reflecting modes or by method of multi-reflection arrays.Devices to implement the claimed method are embodied.Proposed schematic ion optical diagrams allow developing different MS types notable for their minimized material intensity and geometrical dimensions.
Abstract:
A mass analysis device with wide angular acceptance, notably of the mass spectrometer or atom probe microscope type, includes means for receiving a sample, means for extracting ions from the surface of the sample, and a reflectron producing a torroidal electrostatic field whose equipotential lines are defined by a first curvature in a first direction and a first center of curvature, and a second curvature in a second direction perpendicular to the first direction and a second center of curvature, the sample being positioned close to the first center of curvature.
Abstract:
A reflector for a time-of-flight mass spectrometer for reflecting ionized atoms and/or molecules, with an entry opening and with an arrangement of successively arranged ring electrodes extending away from the entry opening along a longitudinal axis of the reflector is illustrated and described, as is a time-of-flight mass spectrometer. The object of providing a reflector for a time-of-flight mass spectrometer or providing such a mass spectrometer, with improved mass resolution at a high detection probability, is achieved by virtue of the fact that the ring electrode closest to the entry opening serves as a correction electrode and is at an opposite electric potential compared to the other ring electrodes, that a screening electrode is provided on the side of the entry opening facing away from the ring electrodes and that the screening electrode lies at a potential that differs from that of the ring electrodes, more preferably at earth potential.
Abstract:
Devices and systems for reflecting ions are provided. In general, the devices and systems include a plurality of curved lens plates adapted for connection to at least one voltage source and having a passage therein to allow the ions to pass therethrough. The plurality of curved lens plates generates electric fields having elliptic equipotential surfaces that reflect and focus the ions as they pass through the passage. Reflectron time-of-flight (RE-TOF) spectrometers are also provided that include an ion source, ion detector, and such a reflectron as described above. Mass spectrometer systems are provided that comprise an ion source that generates ions and a reflectron TOF spectrometer such as described above.
Abstract:
The present invention provides a method of reflecting ions in a multireflection time of flight mass spectrometer comprising providing an ion mirror having a plurality of electrodes, the ion mirror having a cross section with a first, minor axis (Y) and a second, major axis (X) each perpendicular to a longitudinal axis (Z) of the ion mirror which lies generally in the direction of time of flight separation of the ions in the mirror; guiding ions towards the ion mirror; applying a voltage to the electrodes so as to create an electric field which: (a) causes the mean trajectory of the ions to intersect a plane of symmetry of the ion mirror which contains the longitudinal (Z) and major axes (X) of the mirror; (b) causes the ions to reflect in the ion mirror; and (c) causes the ions to exit the ion mirror in a direction such that the mean trajectory of ions passing through the ion mirror has a component of movement in a direction (Y) perpendicular to and diverging from the said plane of symmetry thereof.