Abstract:
Disclosed are methods of making a dielectric on a metal foil, and a method of making a large area capacitor that includes a dielectric on a metal foil. A first dielectric layer is formed over the metal foil by physical vapor deposition, and a dielectric precursor layer is formed over the first dielectric layer by chemical solution deposition. The metal foil, first dielectric layer and dielectric precursor layer are prefired at a prefiring temperature in the range of 350 to 650° C. The prefired dielectric precursor layer, the first dielectric layer and the base metal foil are subsequently fired at a firing temperature in the range of 700 to 1200° C.
Abstract:
A method for manufacturing a substrate board with high efficiency of heat conduction and electrical isolation is disclosed. The method comprises the steps of: providing a substrate layer with an arrangement surface and a heat-dissipating surface; executing an anodic treatment on the arrangement surface and the heat-dissipating surface to respectively form a first anodic treatment layer and a second anodic treatment layer; forming a heat conduction and electrical isolation layer on the second anodic treatment layer; and forming a diamond like carbon (DLC) layer on the heat conduction and electrical isolation layer. The heat expansion coefficient of the substrate layer is greater than that of the second anodic treatment layer, the heat conduction and electrical isolation layer, and the DLC layer in turn.
Abstract:
Described herein are methods for making articles comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
Abstract:
A capacitor comprises: a lower electrode formed of a foil made of a polycrystalline metal; an upper conductor layer; and a dielectric layer disposed between the lower electrode and the upper electrode layer. Grain boundaries of the polycrystalline metal appear at the top surface of the lower electrode. The capacitor further comprises an insulator that is disposed between the top surface of the dielectric layer and the bottom surface of the upper electrode layer and that is present only in part of a region in which the top surface of the dielectric layer and the bottom surface of the upper electrode layer face each other. The insulator is disposed to cover at least part of the grain boundaries appearing at the top surface of the lower electrode when seen from above the top surface of the dielectric layer. The insulator is formed by electrophoresis.
Abstract:
A fabrication method for a metal-base/polymer-resin bonded structured body according to the present invention includes the steps of: (1) applying, to a surface of the metal base, a solution containing an organometallic compound decomposable at 350° C. or lower; (2) baking the applied solution in an oxidizing atmosphere to form, on the surface of the metal base, a coating containing an oxide of the metal of the organometallic compound; (3) providing the polymer resin on the coating; and (4) hardening the polymer resin to provide the metal-base/polymer-resin bonded structured body.
Abstract:
A thin film capacitor with high capacity and low leak current is provided. The thin film capacitor includes a nickel substrate with nickel (Ni) purity of 99.99 weight percent or above, and a dielectric layer and an electrode layer disposed in this order on the nickel substrate. The thin film capacitor is typically manufactured as follows. A precursor dielectric layer is formed on a nickel substrate with nickel purity of 99.99 weight percent or above, and is subjected to annealing to form a dielectric layer. The diffusion of impurities from the nickel substrate to the precursor dielectric layer during annealing is suppressed.
Abstract:
A substrate with hermetically sealed vias extending from one side of the substrate to another and a method for fabricating same. The vias may be filled with a conductive material such as, for example, a fritless ink. The conductive path formed by the conductive material aids in sealing one side of the substrate from another. One side of the substrate may include a sensing element and another side of the substrate may include sensing electronics.
Abstract:
The present invention relates to a circuit board structure with a capacitor embedded therein and the method for fabricating the same. The disclosed structure comprises: a core board; a buffer layer disposed on two surfaces of the core board and having a plurality of open areas; a first circuit layer disposed in the open areas; a high dielectric material film disposed over the first circuit layer and the buffer layer on at least one surface of the core board; and a second circuit layer disposed on the high dielectric material film, wherein the region where the second circuit layer corresponds to the first circuit layer functions as a capacitor, and the first circuit layer on two surfaces of the core board electrically connects to each other by at least one plated through hole. The present invention improves the problem of void generation and enhances the precision of the capacitor region.
Abstract:
The present invention provides a lighting system for use within a display sign, wherein the lighting system comprises a first module having a multi-layer circuit board and an arrangement of components electrically connected to the circuit board. The component arrangement includes a driver control chip that provides regulated voltage to the light emitting diodes, at least one surface mounted resistor, and a pair of light emitting diodes wherein each diode is mounted to a longitudinal end portion of the circuit board. Thus, the driver control chip is positioned between the light emitting diodes. The component arrangement further includes a high-frequency capacitor that filters undesired electrical noise and a rectifying diode that converts electrical potential from alternating current to direct current. A second module is electrically connected to the first module by a pair of flexible conductor wires. The second module includes a multi-layer circuit board and an arrangement of components electrically connected to the circuit board. The component arrangement of the second module is similar to that of the first module, wherein a light emitting diode is mounted to each longitudinal end portion of the circuit board.
Abstract:
Deposited thin-film dielectrics having columnar grains and high dielectric constants are formed on heat treated and polished metal foil. The sputtered dielectrics are annealed at low oxygen partial pressures.