Abstract:
Provided is a shield film having good shielding characteristics in the high frequency region, and a shield printed wiring board. A shield film, provided with, in a layered state: a plurality of metal layers (12, 14) (metal thin film (12), metal foil (14)); an insulating layer (13) disposed between the metal layers; and an electroconductive adhesive layer (15) disposed on the surface of the metal foil (14), from amongst the metal layers (12, 14), on which the insulating layer (13) is not disposed.
Abstract:
A method for manufacturing an antenna sheet. The method is for connecting at least one of an antenna coil and a connection pattern, to a conductive member. The at least one of the antenna coil and the connection pattern is provided on one surface of a substrate and the conductive member is provided on the other surface of the substrate. The method includes a pressing process performed to form a first through hole to the substrate, wherein the first through hole passes through the substrate, and to bring the at least one of the antenna coil and the connection pattern, and the conductive member into contact with each other. The method also includes a melting process performed to melt the at least one of the antenna coil and the connection pattern, and the conductive member to each other.
Abstract:
A laminate contains conductive circuit patterns, a substrate material, and an adhesive pattern or other bond. Each conductive circuit pattern and the substrate material are interconnected by the adhesive pattern or other bond, having its size and shape substantially matching the main outlines of each conductive circuit pattern. Each conductive circuit pattern has thin lines and thin interline spaces, patterned on top of the adhesive pattern or other bond by a removal of conductive material, such that the circuit pattern's thin interline spaces may have residues of the adhesive patterns or other bond. Outside the conductive circuit patterns' main outlines, the substrate material is substantially void of an adhesive or other bond, with the exception of edge areas of the main outlines.
Abstract:
Provided are: a shield film having excellent shield characteristics in the high frequency region of the shield film; and a shield printed wiring board. A shield film (1) is provided on a flexible printed wiring board (8), which has a base film (5) having a signal circuit (6a) formed thereon, and an insulating film (7) that is provided on the whole upper surface of the base film (5) such that the insulating film covers the signal circuit (6a). The shield film 1 has an electroconductive adhesive layer 15 provided throughout a surface of the insulating film 7, and a metal layer 11 provided throughout a surface of the electroconductive adhesive layer 15.
Abstract:
Manufacturing method and circuit module, which comprises an insulator layer and, inside the insulator layer, at least one component, which comprises contact areas, the material of which contains a first metal. On the surface of the insulator layer are conductors, which comprise at least a first layer and a second layer, in such a way that at least the second layer contains a second metal. The circuit module comprises contact elements between the contact areas and the conductors for forming electrical contacts. The contact elements, for their part, comprise, on the surface of the material of the contact area, an intermediate layer, which contains a third metal, in such a way that the first, second, and third metals are different metals and the contact surface area (ACONT 1), between the intermediate layer and the contact area is less that the surface area (APAD) of the contact area.
Abstract:
According to one embodiment, a ceramic circuit board includes a ceramic substrate, a copper circuit plate and a brazing material protrudent part. The copper circuit plate is bonded to at least one surface of the ceramic substrate through a brazing material layer including Ag, Cu, and Ti. The brazing material protrudent part includes a Ti phase and a TiN phase by 3% by mass or more in total, which is different from the total amount of a Ti phase and a TiN phase in the brazing material layer that is interposed between the ceramic substrate and the copper circuit plate. The number of voids each having an area of 200 μm2 or less in the brazing material protrudent part is one or less (including zero).
Abstract:
A transparency having a bus bar system includes a non-conductive substrate having a major surface. At least one conductive coating is located over at least a portion of the major surface. An electrically conductive adhesive, such as an isotropically conductive tape or film, is located over at least a portion of the conductive coating. A metallic member, such as a metallic foil or metallic braid, is located over the isotropically conductive adhesive.
Abstract:
The present invention relates to a substrate raw material such as a copper clad laminate for manufacturing a circuit board. A substrate raw material in accordance with an embodiment of the present invention includes an insulating layer and an organic fiber cloth disposed in the insulating layer.
Abstract:
Electronic devices may be provided with electronic components and electrical connectors coupled between the electronic components. A connector may be formed in a small gap between the electronic components. The connector may be a thin sheet of flexible conductive material with a conductive adhesive on one surface. The connector may be installed between the components using an applicator that is attached to the connector. The applicator may be a pull-tab liner having a first surface that is tacky and a second opposing surface that is non-stick. The applicator may have an extended portion that can be held by a technician while installing the connector. The connector may be installed by inserting the connector and applicator between the components, pinching the components against the connector and applicator, and removing the applicator by pulling the extended portion to peel the applicator from the connector.
Abstract:
A method of manufacturing at least a portion of a printed circuit board. The method includes: applying a lamination adhesive on a first plural-layer substrate that includes a plurality of circuit layers with at least one first metal pad on a first side of the first plural-layer substrate; applying a protective film on the lamination adhesive; forming at least one via into the lamination adhesive to expose the at least one metal pad on the first side of the first plural-layer substrate; filling at least one conductive paste into the at least one via formed in the lamination adhesive; removing the protective film to expose the lamination adhesive on the first plural-layer substrate; and attaching the first plural-layer substrate with a second plural-layer substrate that includes a plurality of circuit layers with at least one second metal pad on a second side of the second plural-layer substrate.