Abstract:
An apparatus comprises a flexible circuit substrate that includes a body portion and at least one connector portion formed monolithically with the body portion. The connector portion is shaped by at least one of one or more bends of the flexible circuit substrate or one or more folds of the flexible circuit substrate, and the connector portion is configured to be received in a receptacle of a connector device. The apparatus also includes at least one electrode formed on the connector portion and configured to make electrical contact with an electrical conductor of the receptacle of the connector device, at least one electronic component on the flexible circuit substrate, and interconnect to provide electrical continuity from the electrode to the electronic component.
Abstract:
Systems and methods for the design and fabrication of flexible devices, including high-performance large-area OLEDs, narrow border display panels and lighting panels are provided. Various described fabrication- and design-processes may be used to provide the necessary electrical drive to lighting and display panels. Electrical drive may be provided to one or more row- and column-signals by patterning conductive elements near the panel edge. The electrical elements may further be folded over a region near the panel edge back on itself, such that electrical traces may route around the display edge. This may allow the display active area to be substantially the same area as its viewing area, and furthermore may allow pixels go substantially all the way to the edge of the viewing area.
Abstract:
Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
Abstract:
A multi-layer microwave corrugated printed circuit board is provided. In one embodiment, an interconnect assembly includes a first flat flexible layer having a signal conductor and a ground conductor forming a first microstripline or microstrip transmission line, a second folded flexible layer having a signal conductor and a ground conductor forming a second microstripline or microstrip transmission line, the bottom surface of the second folded flexible layer having ridge portions, a non-conductive adhesive layer disposed between the top surface of the first flat flexible layer and the ridge portions of the second folded flexible layer, a signal through-hole extending through the non-conductive adhesive layer and the first flat flexible layer, and two ground through-holes extending through the non-conductive adhesive layer and the second folded flexible layer, wherein the two ground through-holes are disposed on opposite sides of the signal through-hole.
Abstract:
A display apparatus includes a display panel, a drive circuit provided to the display panel, and a wiring substrate. The wiring substrate includes a proximal end portion joined to the display panel, an extended portion extended from the proximal end portion, a first fixed portion extended from the extended portion in one direction inclined from an extending direction of the extended portion, and a second fixed portion extended from the extended portion in the other direction inclined from the extending direction. The extended portion is folded back to face the proximal end portion. The first fixed portion and the second fixed portion are folded back so as to straddle side surfaces of the display panel and so that their end portions are arranged on a side of the display panel opposite to a side of the same on which the proximal end portion is arranged.
Abstract:
A flexible cable with a substrate divided into at least two sections is disclosed. The first section includes a first electrically conductive track and a first attach pad, while the section includes a second and third electrically conductive tracks, as well as a second attach pad. The first section is disposed on the second section to align the attach pads and connect the first electrically conductive track to the third electrically conductive track. The resulting flexible cable can be used with a low profile electrical device.
Abstract:
Disclosed herein is a cost effective rigid- flex circuit board comprising a flexible section which contents at least one flexible flat cable for interconnect, and a plurality of rigid sections which consists of at least one rigid printed circuit board (8) for components mounting. The improved flexible flat cable comprising at least one layer of flat wires laminated with a plurality of insulating material. The flat wires having non-uniform width and pitch are folded with different angle along the length to resemble wiring patterns of a typical flexible printed circuit board. The rigid section consists of at least one piece of rigid printed circuit board having at least one layer of circuit pattern.
Abstract:
A device comprising a laminate (2) comprising at least two layers (31, 32, 33, 34, 35) and a plurality of electronic components (5, 6, 7, 8) disposed between two layers. At least one of the layers (31, 34) supports conductive tracks (10, 11) arranged to connect electronic components.
Abstract:
First and second FPC fixing members 12, 13 are fixed within a boss 6 on a second axis Y, and one end of the second member 13 projects to the back of a hinge base 8. An FPC wiring fixing section 26 is fixed on the back of the base 8 on a first axis X. The fixing members pass an FPC 25 from the base 8 side to the side of a monitor 3 to hold the FPC linearly on the axis Y, and are turned integrally with a monitor mounting base 14. The fixing members curve outside the axis Y the FPC 25 that is led out in the direction orthogonal to the axis Y from the one end on the base 8 side of the second member 13 to have a deflection allowance, and fix the FPC to the base 8.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.