Abstract:
An apparatus for activating a personal protection arrangement for a vehicle, including a housing, at least one circuit board, and at least one electrical or electronic component, the circuit board having at least one layer for shielding electromagnetic radiation, the circuit board being positioned in the housing in such a way that when the apparatus is mounted in the vehicle, the circuit board shields the electromagnetic radiation that is emitted by the at least one electrical or electronic component at least with respect to the interior of the vehicle. And to a method for manufacturing such an apparatus.
Abstract:
An electronic device includes a printed circuit board (PCB), the PCB including at least one grounding pad, an integrated circuit mounted on the PCB; an electrically-conductive frame mounted on the PCB and surrounding the integrated circuit, the frame being electrically connected to the at least one grounding pad, and a flexible electrically-conductive, high-thermal-conductivity heat spreader in electrical contact with the frame and in thermal contact with the integrated circuit. The frame, the heat spreader, and the at least one grounding pad form an EMI shield that reduces EMI leakage from the integrated circuit outside a volume defined by the frame, the heat spreader, and the at least one grounding pad.
Abstract:
A transmission line portion of a flat cable includes first regions and second regions connected alternately. In the first region, the transmission line portion is a flexible tri-plate transmission line including a dielectric element including a signal conductor, a first ground conductor including opening portions, and a second ground conductor which is a solidly filled conductor. In the second region, the transmission line portion is a hard tri-plate transmission line including a wide dielectric element including a meandering conductor, and a first ground conductor and a second ground conductor which are solidly filled conductors. A variation width of the characteristic impedance in the second region is larger than a variation width of the characteristic impedance in the first region.
Abstract:
The present invention relates to an electromagnetically-countered display system including at least one wave source and at least one counter unit, where such a wave source irradiates harmful electromagnetic waves and the counter unit emits counter electromagnetic waves for countering the harmful waves therewith. More particularly, the present invention relates to various counter units for the electromagnetically-countered display system and to various mechanisms to counter the harmful waves with the counter units, e.g., by matching configurations of the counter units with those of the wave sources, by matching wavefronts of the harmful waves with those the counter waves, and so on. The present invention also relates to various methods of countering the harmful waves with such counter waves by source and/or wave matchings, various methods of providing the counter units for emitting the counter waves defining desired wave characteristics, and the like. The present invention further relates to various processes for providing the electromagnetically-countered display systems and their counter units. The present invention further relates to various electric and magnetic shields employed either alone or in conjunction with the counter units for minimizing irradiation of the harmful waves from the shaving system.
Abstract:
Provided are: a shield film having excellent shield characteristics in the high frequency region of the shield film; and a shield printed wiring board. A shield film (1) is provided on a flexible printed wiring board (8), which has a base film (5) having a signal circuit (6a) formed thereon, and an insulating film (7) that is provided on the whole upper surface of the base film (5) such that the insulating film covers the signal circuit (6a). The shield film 1 has an electroconductive adhesive layer 15 provided throughout a surface of the insulating film 7, and a metal layer 11 provided throughout a surface of the electroconductive adhesive layer 15.
Abstract:
Various systems of an electronic deice and methods for manufacturing the same are provided. In some embodiments, a routing assembly is provided that may not only route a cable along a circuit board, but that may also shield and electronic component or secure an electronic component to the circuit board. In some other embodiments, there is provided a mechanism for electrically coupling two components of an electronic device that may also be visually appealing in the context of other portions of the electronic device.
Abstract:
The present invention relates to an electromagnetically-countered display system including at least one wave source and at least one counter unit, where such a wave source irradiates harmful electromagnetic waves and the counter unit emits counter electromagnetic waves for countering the harmful waves therewith. More particularly, the present invention relates to various counter units for the electromagnetically-countered display system and to various mechanisms to counter the harmful waves with the counter units, e.g., by matching configurations of the counter units with those of the wave sources, by matching wavefronts of the harmful waves with those the counter waves, and so on. The present invention also relates to various methods of countering the harmful waves with such counter waves by source and/or wave matchings, various methods of providing the counter units for emitting the counter waves defining desired wave characteristics, and the like. The present invention further relates to various processes for providing the electromagnetically-countered display systems and their counter units. The present invention further relates to various electric and magnetic shields employed either alone or in conjunction with the counter units for minimizing irradiation of the harmful waves from the shaving system.
Abstract:
A multilayer rigid flexible printed circuit board including a flexible region including a flexible film having a circuit pattern formed on one or both surfaces thereof and a laser blocking layer formed on the circuit pattern and a rigid region formed adjacent to the flexible region and including a plurality of pattern layers on one or both surfaces of extended portions extended to both sides of the flexible film of the flexible region, and a method for manufacturing the same.
Abstract:
A magnetic stand for a tablet device is disclosed. The magnetic stand is configured to rigidly hold a portion of the tablet device in place and to shield the magnetic field from adversely affecting nearby devices susceptible to strong magnetic fields. The shielding portion of the magnetic stand allows for significant increases in magnetic field strength when compared to similarly configured, unshielded products.
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.