Abstract:
Disclosed is a method of manufacturing a hybrid structure of multi-layer substrates. The method comprises steps of: separating a border district of at least one metal layer connecting with a border district of the corresponding dielectric layer from adjacent metal layers and adjacent dielectric layers for each multi-layer substrate and connecting a separated border of a metal layer of one multi-layer substrate with a separated border district of a metal layer of another multi-layer substrate to form a connection section. The hybrid structure comprises at least a first multi-layer substrate and a second multi-layer substrate. At least one first metal layer is connected with at least one second metal layer to form a connection section.
Abstract:
A method of manufacturing a rigid-flex circuit board includes preparing a first and a second coverlay film (200, 250), and a first and a second circuit substrate (100, 150) having a first and a second circuit (103, 153) formed thereon, and a first interlayer adhesive sheet (300); Stacking the first coverlay film (200), the first circuit substrate (100) disposed such that the first circuit (103) opposes the first coverlay film (200), the first interlayer adhesive sheet (300) located in a region where a rigid portion (700) is to be formed, the second coverlay film (250), and the second circuit substrate (150) disposed such that the second circuit (153) opposes the second coverlay film (250), and executing a heat-pressing process.
Abstract:
A ceramic circuit substrate and a manufacturing method thereof are provided, which has excellent thermal shock tolerance by forming a gap between a circuit pattern section and a ceramic substrate, and has a capability of preventing etchant residue from remaining therein. The ceramic circuit substrate according to the present invention includes patterns of brazing material (8 and 9) formed on the ceramic substrate, and a circuit pattern section jointed to the patterns of brazing material. The patterns of brazing material includes a line pattern along the edge of the circuit pattern. Also, a gap is formed within the line pattern located between the ceramic substrate and the circuit pattern.
Abstract:
Disclosed is a method of manufacturing a hybrid structure of multi-layer substrates. The method comprises steps of: separating a border district of at least one metal layer connecting with a border district of the corresponding dielectric layer from adjacent metal layers and adjacent dielectric layers for each multi-layer substrate and connecting a separated border of a metal layer of one multi-layer substrate with a separated border district of a metal layer of another multi-layer substrate to form a connection section. The hybrid structure comprises at least a first multi-layer substrate and a second multi-layer substrate. At least one first metal layer is connected with at least one second metal layer to form a connection section.
Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The conductive patterns include a series of electrical contacts adjacent to one edge of the substrate. The substrate is bonded to two rigid frames, one on each opposite surface. Each substrate has a series of castellations on one edge that are aligned and electrically connected to the respective contacts on the substrate, preferably by soldering. The castellations can serve as a self-aligning mechanism when the module is brought into contact with a low-profile pin array, and the module may be held in place on a motherboard by guide rails in a socket that engages the edges perpendicular to the castellated edge of the module. The module may further be provided with protective heat spreading covers.
Abstract:
An object of the present invention is to provide a flexible printed wiring board and multilayered flexible printed wiring board in which, in methods of laminating substrates comprising a non-adhering section and an adhering section, adhesion of the FPC substrates of the flexure part can be prevented and adequate flex resistance can be maintained.The present invention provides a flexible printed wiring board comprising at least an electric insulating layer and a conductor layer wherein the surface of the electric insulating layer has a 10-point average roughness of at least 1.5 μm and less than 2.0 μm and contact angle of at least 60° and less than 120°, or has a 10-point average roughness of at least 2.0 μm and less than 4.0 μm, and also provides a multilayered flexible printed wiring board formed by the lamination of two or more of the flexible printed wiring boards in which the surface of the electric insulating layers of the two or more flexible printed wiring boards exposed in a bendable state are opposing in a non-adhered state, and a part of the wiring boards is laminated on each of a first multilayered flexible printed wiring board and a second multilayered flexible printed wiring board.
Abstract:
A method and structure for producing an angled RF connection between a first element and a second element using a flexible substrate is provided. The method includes laminating a flexible substrate onto the first element; bending the flexible substrate such that a bonding pad on the flexible substrate is in a similar plane as a bonding pad on the second element; and creating the angled RF connection by wire bonding the bonding pad on the flexible substrate and the bonding pad on the second element. The structure includes a flexible substrate that is laminated onto a first element as an outer layer, flexible substrate having at least one bonding pad, and the flexible substrate able to bend in an angle that places the bonding pad in a same plane as a bonding pad on a second element.
Abstract:
A rigid flexible printed circuit board (PCB) and a method of fabricating the same. Since a polyimide copper clad laminate is not used during the fabrication of the rigid flexible PCB, an increase in cost resulting from use of the polyimide copper clad laminate and poor reliability of adhesion at an interface between different materials are avoided.
Abstract:
A circuit board 1 having a base material 10 and an electrode 11 formed on at least one main surface of the base material 10 includes an easy peeling portion 12 formed in at least one of an inner portion and a side portion of the electrode 11, with the adhesive strength between the electrode 11 and the easy peeling portion 12 being less than the adhesive strength between the electrode 11 and the base material 10. A circuit board that has high connection reliability and enables narrow pitch mounting thereby can be provided.
Abstract:
The invention provides a substrate with multi-layer interconnection structure, which includes a substrate and a multi-layer interconnection structure formed on the substrate. The multi-layer interconnection structure is adhered to the substrate in partial areas. The invention also provides a method of manufacturing and recycling such substrate and a method of packaging electronic devices by using such substrate. The invention also provides a method of manufacturing multi-layer interconnection devices.