Abstract:
A circuit board includes a substrate defining a plurality of ground attaching holes and a plurality of first through-holes. The substrate includes a first surface and a side edge. Wherein, a plurality of parallel and spaced first conductive paths is formed on the first surface around each ground attaching hole. A first arcuate conductive portion is formed at each end of each first conductive path. An angle between each first conductive path and the side edge is 45° or 135°. The first through-holes respectively extend through the first arcuate conductive portions and electrically couple with the first conductive paths.
Abstract:
A wire pattern is divided into a plurality of portions in order to provide a circuit board for which very reliably bonding can be achieved and a liquid ejection head including the circuit board.
Abstract:
A printed substrate includes: a substrate; a copper layer formed on the substrate; and a resin formed on the substrate to cover a part of the copper layer, wherein the copper layer includes a first region covered by the resin and a second region in which a shield sheet metal is installed, the shield sheet metal surrounding a predetermined region of the substrate, and wherein an angle formed between an outer edge portion of the copper layer covered by the resin and an outer edge portion of the resin which covers the copper layer at a location at which the outer edge portion of the copper layer and the outer edge portion of the resin intersect each other as viewed in plan is an obtuse angle.
Abstract:
The present disclosure discloses a wiring board used to connect a driving chip and a display panel, a flexible display panel and a display device. Signal output ends on the driving chip and signal input ends on the display panel may be arranged in pairs; and the wiring board may include fanout lines each of which is configured to connect a pair of signal output end and the signal input end. The wiring board may include a substrate; a plurality of segments of first connection lines having first resistivity is arranged on a first surface of the substrate; a plurality of segments of second connection lines having second resistivity is arranged on a second surface of the substrate opposite to the first surface. At least parts of the fanout lines are formed by connecting the first connection lines and the second connection lines.
Abstract:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating differential wiring patterns in multilayer glass-ceramic (MLC) modules. A structure and method of forming a MLC having layers with staggered, or offset, pairs of lines formed directly on one another are disclosed. In addition, a structure and method of forming a MLC having layers with staggered, or offset, pairs of lines that periodically reverse polarity are disclosed.
Abstract:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating differential wiring patterns in multilayer glass-ceramic (MLC) modules. A structure and method of forming a MLC having layers with staggered, or offset, pairs of lines formed directly on one another are disclosed. In addition, a structure and method of forming a MLC having layers with staggered, or offset, pairs of lines that periodically reverse polarity are disclosed.
Abstract:
A pattern forming method of ejecting inks in the form of droplets to a base material including a first region and a second region which differ from each other in terms of surface energy by an ink jet method, includes: a preparation step of preparing the base material including the first region and the second region; and a droplet ejection step of simultaneously ejecting a first ink and a second ink in the form of droplets to the first region and the second region respectively by using a multipass method, wherein the inks are at least two kinds of inks including the first ink having volatility and the second ink having curability, the first ink and the first region are lyophilic, and the second ink and the second region are lyophilic.
Abstract:
The embodiments of the present invention relate generally to the fabrication of integrated circuits, and more particularly to a structure and method for fabricating differential wiring patterns in multilayer glass-ceramic (MLC) modules. A structure and method of forming a MLC having layers with staggered, or offset, pairs of lines formed directly on one another are disclosed. In addition, a structure and method of forming a MLC having layers with staggered, or offset, pairs of lines that periodically reverse polarity are disclosed.
Abstract:
A high-frequency signal transmission line includes a plate-shaped dielectric element assembly, a linear signal line, and a first ground conductor. The linear signal line is provided at the dielectric element assembly and includes a plurality of thick portions and a plurality of thin portions with a smaller width than the thick portions. The first ground conductor is provided at the dielectric element assembly and positioned on one side in a normal direction to the dielectric element assembly relative to the signal line. The first ground conductor includes a plurality of openings overlapping with the signal line and also includes bridge portions provided between the openings so as to cross the thin portions. The bridge portions cross the thin portion obliquely when viewed in a plan view in the normal direction to the dielectric element assembly.
Abstract:
One method of making an electronic assembly includes mounting one electrical substrate on another electrical substrate with a face surface on the one substrate oriented transversely of a face surface of the other substrate. The method also includes inkjet printing on the face surfaces a conductive trace that connects an electrical contact on the one substrate with an electrical connector on the other substrate. An electronic assembly may include a first substrate having a generally flat surface with a first plurality of electrical contacts thereon; a second substrate having a generally flat surface with a second plurality of electrical contacts thereon, the surface of the second substrate extending transversely of the surface of said first substrate; and at least one continuous conductive ink trace electrically connecting at least one of the first plurality of electrical contacts with at least one of the second plurality of electrical contacts.