Abstract:
A composite device includes a substrate and a mounted component mounted on a surface of, or inside, the substrate. The substrate includes a first thermoplastic resin layer. A surface of the mounted component includes a second thermoplastic resin layer that includes a same or a similar material as that of the first thermoplastic resin layer. A bonding layer that bonds the second thermoplastic resin layer and the first thermoplastic resin layer together is provided between the second thermoplastic resin layer and the first thermoplastic resin layer.
Abstract:
A method for manufacturing a wiring board includes preparing a core structure, forming on a first surface of the core structure a first buildup structure including insulation layers, and forming on a second surface of the core structure on the opposite side of the first surface of the core structure a second buildup structure including insulation layers and an inductor device. The insulation layers in the second buildup structure have thicknesses which are thinner than thicknesses of the insulation layers in the first buildup structure, and the forming of the second buildup structure includes forming the inductor device in the second buildup structure on the second surface of the core structure such that at least a portion of a conductive pattern formed in the core structure is included as a portion of the inductor device.
Abstract:
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer.
Abstract:
In a conventional electronic device and a method of manufacturing the same, reduction in cost of the electronic device is hindered because resin used in an interconnect layer on the solder ball side is limited. The electronic device includes an interconnect layer (a first interconnect layer) and an interconnect layer (a second interconnect layer). The second interconnect layer is formed on the undersurface of the first interconnect layer. The second interconnect layer is larger in area seen from the top than the first interconnect layer and is extended to the outside from the first interconnect layer.
Abstract:
In a high frequency signal line, a first signal line extends along a first dielectric element assembly, a first reference ground conductor extends along the first signal line, a second signal line is provided in or on the second dielectric element assembly and extends along the second dielectric element assembly, a second reference ground conductor is provided in or on the second dielectric element assembly and extends along the second signal line. A portion of a bottom surface at an end of the first dielectric element assembly and a portion of the top surface at an end of the second dielectric element assembly are joined together such that a joint portion of the first and second dielectric element assemblies includes a corner. The second signal line and the first signal line are electrically coupled together. The first and second reference ground conductors are electrically coupled together.
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor module and a method for manufacturing the same. The semiconductor substrate includes a first dielectric structure, a second dielectric structure, a first patterned conductive layer and a second patterned conductive layer. The first dielectric structure has a first surface and a second surface opposite the first surface. The second dielectric structure has a third surface and a fourth surface opposite the third surface, where the fourth surface is adjacent to the first surface. The second dielectric structure defines a through hole extending from the third surface to the fourth surface. A cavity is defined by the through hole and the first dielectric structure. The first patterned conductive layer is disposed on the first surface of the first dielectric structure. The second patterned conductive layer is disposed on the second surface of the first dielectric structure.
Abstract:
A printed wiring board includes a core substrate, an electronic component accommodated in the substrate, a first buildup structure formed on surface of the substrate and including an interlayer insulation layer, and a second buildup structure formed on the opposing surface of the substrate and including an interlayer insulation layer. The substrate includes a core material portion including multiple resin layers, a first conductive layer formed on first surface of the core portion and a second conductive layer formed on second surface of the core portion, the core portion has opening through the resin layers and accommodating the component, the insulation layer of the first structure is positioned such that the opening of the core portion is covered on the first surface, and the insulation layer of the second structure is positioned such that the opening of the core portion is covered on the second surface.
Abstract:
A wiring board includes a substrate having a laminated-inductor forming portion and including multiple first insulation layers and a second insulation layer formed on a first side of the first insulation layers such that the first insulation layers have the laminated-inductor forming portion, and a planar conductor formed on the second insulation layer of the substrate and formed to shield electromagnetic force generated from the laminated-inductor forming portion of the substrate. The laminated-inductor forming portion of the substrate has multiple inductor patterns formed on the first insulation layers and multiple via conductors connecting the inductor patterns through the first insulation layers, and the inductor patterns include an uppermost inductor pattern formed between the second insulation layer and the first insulation layers such that the uppermost inductor pattern has a distance of 100 μm or more from the planar conductor.
Abstract:
A wiring board includes a core structure having a first surface and a second surface on the opposite side of the first surface, a first buildup structure formed on the first surface of the core structure and including insulation layers, and a second buildup structure formed on the second surface of the core structure and including insulation layers and an inductor device. The insulation layers in the second buildup structure have the thicknesses which are thinner than the thicknesses of the insulation layers in the first buildup structure, and the inductor device in the second buildup structure is position on the second surface of the core structure and includes at least a portion of a conductive pattern formed in the core structure.
Abstract:
A printed wiring board includes an interlayer resin insulation layer having a penetrating hole, a conductive circuit formed on a first surface of the interlayer resin insulation layer, a filled via conductor formed in the penetrating hole of the interlayer resin insulation layer and connected to the conductive circuit, a first surface-treatment coating structure formed on a first surface of the filled via conductor and having an electroless plating structure, and a second surface-treatment coating structure formed on a second surface of the filled via conductor on an opposite side with respect to the first surface-treatment coating structure and having an electroless plating structure. The filled via conductor includes a first conductive layer formed on side wall of the penetrating hole and a plated material filling the penetrating hole, and the first surface-treatment coating structure has a thickness which is different from a thickness of the second surface-treatment coating structure.