Abstract:
An autoclave suitable for use for heating articles such as tires is described. The autoclave includes an elongated chamber having an interior section and an annular duct surrounding the interior section, wherein the annular duct is separated from the interior section by a dividing wall; said autoclave further including a heat source for heating the air, a fan for circulating the air in the chamber, and an air deflector mounted in a distal end of the chamber. The air deflector is positioned to redirect the airflow towards the interior portion of the chamber to eliminate air recirculation zones and improve the temperature uniformity.
Abstract:
Disclosed are a hydrogen generator and a method of producing hydrogen gas therefrom. A fuel unit containing a fuel that releases hydrogen gas when heated is removably disposed in a cavity within a housing having a door. A heater assembly for heating the fuel unit is disposed in the hydrogen generator. A mechanism retracts the heater assembly from the fuel unit when the door is opened and extends the heater assembly to contact the fuel unit when the door is closed. When the heater assembly is retracted, more space is available into which the fuel unit can be inserted to prevent damage to the heater assembly and the fuel unit, and when the heater assembly is extended, good contact is provided between the heater assembly and the fuel unit for efficient heating. A cam bar can move the heater assembly normal to the lateral motion of the cam bar.
Abstract:
Methods and systems for suppressing coking in dehydration reactions catalyzed by solid acids. Dehydration reactions catalyzed by one or more solid acid catalysts can be performed in the presence of a super critical carbon dioxide medium which prevents or minimizes coking of the solid acid catalysts. Methods and systems are provided for producing glycerol products, such as acrolein, acrylic acid, acetol, by performing a dehydration reaction of glycerol using one or more solid acid catalysts in the presence of a super critical carbon dioxide reaction medium. Such methods and systems can be nm for extended periods of time, or continuously, due to catalyst regeneration and/or recycling. Such methods and systems are configured to produce glycerol products from crude glycerol feedstock with minimal pretreatment.
Abstract:
Reactor for the synthesis of melamine from urea, in accordance with the high-pressure non-catalytic process, comprising: a vertical reactor body (1), at least one inlet (2) for the urea melt, a set of heating elements (3), and a central duct (7), said set of heating elements (3) being arranged inside said central duct.
Abstract:
A plurality of substantially identical, thermally and/or atmospherically isolated modules can be employed to effect a treatment process. Each module can include a thermal system and/or atmospheric control system to effect a step of a treatment process, such as a heat treatment process for metal articles, particularly heat treatment and/or welding of parts made from so-called “super allows.” The module control systems can communicate and/or cooperate to carry out a process.
Abstract:
The present application relates to a method of manufacturing a tube sheet (7) and heat exchanger assembly for a pool reactor or pool condenser for use in the production of urea from ammonia and carbon dioxide, wherein the method comprises manufacturing of the tube sheet (7) from a carbon steel material grade and providing said tube sheet (7) with corrosion protective layers (8, 9) of an austenitic-ferritic duplex stainless steel grade, wherein the heat exchanger comprises at least one U-shaped tube (13) of an austenitic-ferritic duplex stainless steel grade, the method further comprises inserting at least two sleeves (11) of an austenitic-ferritic duplex stainless steel grade through the tube sheet (7) such that both ends of the sleeve (11) extend in a direction away from the tube sheet (7), the method further comprises connecting the sleeves (11), at least the opposing ends thereof, to at least the protective layers (8,9) of the tube sheet (7) and finally, connecting both ends of the at least one U-shaped tube (13) to the respective sleeves (11).
Abstract:
A dual vessel reactor and a method of carrying out a reaction using a dual vessel reactor are provided using a non-condensable gas to substantially isolate the inner vessel from the outer vessel during the reaction and limit the heating of the outer vessel when steam from the inner vessel condenses on the interior surface of the outer vessel. By limiting the heating of the outer vessel through the condensation of the steam or other vapor from the inner vessel, the operating temperature of the outer vessel is kept below an upper threshold of the operating temperature of a seal used to seal the door in the outer vessel.
Abstract:
A reactor and a reactor system for carrying out high temperature and high pressure reactions is disclosed herein. The reactor has an isolatable inner vessel for allowing for heat energy efficient cooling and heating of the reactor. The reactor comprises an outer reactor adapted for withstanding a reaction pressure and a reaction temperature, the outer reactor having a sealable reactor lid; an inner vessel within the outer reactor for containing a reaction solution and at least one reaction vessel, the inner vessel being open to the outer reactor such that the reaction pressure of the inner vessel and the outer reactor are substantially equalized and vapor in the inner vessel passes to the outer vessel, the inner vessel having a splatter shield for substantially preventing spillage of the reaction solution from the inner vessel into the outer reactor; a vapor injector in communication with the inner vessel for injecting vapor into the inner vessel for heating the reaction solution; an outlet in the outer vessel for exhausting vapor from the outer reactor and the inner vessel; and an outer reactor outlet for draining a liquid contained between the outer reactor and the inner vessel.
Abstract:
A viewport assembly may allow viewing of a retort chamber while protecting the viewer from heat of the retort chamber through a high-temperature-resistant window in an end wall of the viewport assembly. An access port in the end wall may allow use of tools, such as a welding device. An insulated door between the viewport assembly and the retort chamber may enhance protection and heat retention. The assembly may enhance retention of inert atmosphere in the retort chamber as well as heat, facilitating work on superalloy articles.
Abstract:
Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-Ill nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-Ill nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-Ill nitride into said fluid.