Abstract:
A gas field ionization ion source (GFIS) is characterized in that the aperture diameter of the extraction electrode can be set to any of at least two different values or the distance from the apex of the emitter to the extraction electrode can be set to any of at least two different values. In addition, solid nitrogen is used for cooling. It may be possible to not only let divergently emitted ions go through the aperture of the extraction electrode but also, in behalf of differential pumping, reduce the diameter of the aperture. In addition, it may be possible to reduce the physical vibration of the cooling means. Consequently, it may be possible to provide a highly stable GFIS and a scanning charged particle microscope equipped with such a GFIS.
Abstract:
A laser atom probe (100) situates a counter electrode between a specimen mount and a detector (106), and provides a laser (116) having its beam (122) aligned to illuminate the specimen (104) through the aperture (110) of the counter electrode (108). The detector, specimen mount (102), and/or the counter electrode may be charged to some boost voltage and then be pulsed to bring the specimen to ionization. The timing of the laser pulses may be used to determine ion departure and arrival times allowing determination of the mass-to-charge ratios of the ions, thus their identities. Automated alignment methods are described wherein the laser is automatically directed to areas of interest.
Abstract:
A photoemission electron microscopy having a light source system for carrying out a high-resolution measurement such as work function distribution measurement or magnetic domain distribution with reliability, and a high-sensitivity measurement method using the photoemission electron microscopy. A photoemission electron microscopy having an excitation light source system in which a specimen is irradiated with irradiation light from a light source uses a vacuum chamber in which the specimen is placed and an objective lens which collects the irradiation light on a specimen surface. The objective lens is accommodated in the vacuum chamber. The light source may be placed outside the vacuum chamber. A condenser lens which makes the irradiation light from the light source generally parallel may be placed between the light source and the vacuum chamber. A transmission window which transmits the irradiation light while the vacuum chamber is sealed may be placed between the condenser lens and the objective lens. If a diffraction grating for selecting the wavelength of the irradiation light or a polarizing filter for selecting the direction of circularly polarized light in the irradiation light is used between the condenser lens and the transmission window, a high-resolution measurement of a work function distribution or a magnetic domain distribution on the specimen surface can be carried out.
Abstract:
The invention relates to a method and to apparatus for processing a specimen, particularly an integrated circuit, in which an area of the specimen to be processed is scanned with a corpuscular beam and at least one gas is supplied above the area to be processed so that with the aid of the corpuscular beam a chemical reaction takes place on the area to be processed. The processing speed can be markedly increased by the use of a magnetic field in the region of the probe.
Abstract:
A scanning microscope is provided for producing a scan image at high spatial resolution and in a low acceleration voltage area. An acceleration tube is located in an electron beam path of an objective lens for applying a post-acceleration voltage of the primary electron beam. The application of an overlapping voltage onto a sample allows a retarding electric field against the primary electron beam to be formed between the acceleration tube and the sample. The secondary electrons generated from the sample and the secondary signals such as reflected electrons are extracted into the acceleration tube through the effect of an electric field (retarding electric field) immediately before the sample. The signals are detected by secondary signal detectors located upwardly than the acceleration tube.
Abstract:
A method of observing an electric defect inside a solid sample directly by observing the situation in which conduction electrons are scattered inside the solid sample and means for realizing the method are described. A thin film electrode 2 is arranged opposite to the surface of the solid sample 1 with a minute gap, potential difference is applied between the solid sample 1 and the thin film electrode 2 by a gap voltage supply 7, conduction electrons inside he solid sample 1 are extracted outside the sample 1 by tunnel effect, and an electronic image by these extracted electrons is formed and displayed using an electronic optical system 5. By observing said electronic image, the situation of scattering of conduction electrons inside the solid sample 1 can be known and further, the information of an electric defect inside the solid sample 1 can be obtained.
Abstract:
An instrument for surface analysis includes rastering an electron beam across an anode to generate x-rays. A concave Bragg monochromator focuses an energy peak of the x-rays to a specimen surface, the x-rays rastering the surface to emit photoelectrons. An analyzer provides information on the photoelectrons and thereby chemical species in the surface. A second detector of low energy photoelectrons is cooperative with the rastering to produce a scanning photoelectron image of the surface for imaging of the specimen. Alternatively a lens formed of two concave grids transits the photoelectrons to the analyzer with selectively modified energy so that the analyzer detects either higher energy electrons characteristic of chemical species or lower electrons for the image. The monochromator is formed of platelets cut from an array of platelets in a single crystal member. For imaging of insulating specimens, the surface is flooded periodically with electrons, and the signals are omitted from the image during the flooding. For chemometric information summed over the surface of insulators, data from the edges is omitted from the summing.
Abstract:
An instrument for surface analysis includes a gun for selectively focusing an electron beam on an anode spot, or rastering the beam across an array of such spots, to generate x-rays. A concave monochromator focuses an energy peak of the x-rays to a specimen surface, in a spot on a selected pixel area or across an array of pixel areas on the surface to emit photoelectrons. An analyzer with a detector provides information on the photoelectrons and thereby chemical species in the surface. A second detector of low energy photoelectrons is cooperative with the rastering to produce a scanning photoelectron image of the surface, for viewing of a specimen to be positioned, or for imaging an insulator surface. The monochromator is formed of platelets produced by cutting an array of platelets from a single crystal member, and bonding the platelets to a concave face of a base plate juxtaposed in crystalline alignment in a positioned array identical to that of the initial array.
Abstract:
A time-dependent record depicting the motion of one or more selected atoms with a time resolution equal to or shorter than 10.sup.-12 second is generated by applying an electric field to a field emission tip. Electrons emitted from the selected atoms are focused into a beam which is swept over a spatially resolved electron detector for sensing the intensity of the beam as a function of time for creating the record. One- or two-dimensional records can be generated without signal averaging. The electrons can be directed onto a spot on a surface where dynamics are to be probed, and the electrons scattered or emitted from said surface are then focused into the electron beam. This method can also be used for transmitting information to a remote location at high frequency.
Abstract:
A photoelectron microscope wherein a normal conductive coil is used to produce a divergent magnetic field to form an enlarged photoelectron image of a specimen to be examined. The coil is only momentarily energized by pulse current, and in synchronism with the energization of the coil and while the change of the resultant magnetic field with time is small, the radiation source is actuated to produce a radiation pulse so that the photoelectrons produced upon irradiation of a specimen with the pulse flies through the magnetic field so as to be received by an image forming device. The image forming device is operated in synchronism with and a predetermined variable period of time after the actuation of the radiation source thereby to obtain photoelectron images of the specimen of different energy levels. By skimming only those photoelectrons of low energy which are emitted close to the axis of the magnetic field, it is possible to obtain images of high resolution.