Abstract:
A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.
Abstract:
A method and system are provided for detecting the concentration of an analyte in a fluid sample. The method and system involve analysis of a volatilized, ionized fluid sample using a mass spectrometer or other ionic analyte detection device that provides a signal proportional in intensity to the quantity of ionized analyte detected. The improvement involves replacement of a necessary non-analyte component in the fluid sample with a substitute component that serves the same purpose as the original component but is either more volatile than the original component and/or the analyte or undergoes a reaction to provide lower molecular weight reaction products, and results in an increased intensity in signal and signal-to-noise ratio. Acoustic fluid ejection is a preferred method of generating nanoliter-sized droplets of fluid sample that are then volatilized, ionized, and analyzed. Also provided are zwitterionic compounds suitable as the substitute components that when ionized and heated decompose to provide carbonic dioxide, a nitrogenous species such as ammonia, an amine, or nitrogen gas, and a volatile aromatic compound.
Abstract:
Provided herein is generally tubular container, preferably including a plurality of reservoirs defined therein. The container can be adapted for acoustic ejection of a fluid disposed within at least one of the reservoirs of the plurality of reservoirs. Alternatively, the container can be adapted for extraction of a fluid disposed within at least one of the reservoirs of the plurality of reservoirs using a non-acoustic liquid handling method.
Abstract:
A method is provided for achieving transfection of host cells using sonoporation. An acoustic radiation generator is positioned in acoustic coupling relationship with respect to a reservoir containing host cells to be transfected, exogenous material to be incorporated into the host cells, and a cell-compatible fluid medium. The acoustic radiation generator is activated to generate acoustic radiation and direct the acoustic radiation into the reservoir in a manner effective to enable transfection of the host cells with the exogenous material.
Abstract:
In an aspect of this invention, a closure for a well plate is provided which has a reservoir. The closure has openings through which acoustic ejection of fluid droplets can take place without removing the closure. The reservoirs in the closure may help to maintain acceptable levels of solvent in the wells of the well plate despite the evaporation which may occur during the course of ejection.
Abstract:
The invention provides apparatuses and methods for acoustically ejecting the fluid from a reservoir contained in or disposed on a substrate. The reservoir has a portion adapted to contain a fluid, and an acoustic radiation generator is positioned in acoustic coupling relationship to the reservoir. Acoustic radiation generated by the acoustic radiation generator is transmitted through at least the portion of the reservoir to an analyzer. The analyzer is capable of determining the energy level of the transmitted acoustic radiation and raising the energy level of subsequent poises to a level sufficient to eject fluid droplets from the reservoir. The invention is particularly suited for delivering fluid from a plurality of reservoirs in an accurate and efficient manner.
Abstract:
To ejecting a droplet from a reservoir, the reservoir holding a fluid is moved with respect to an acoustic ejector. As the reservoir and ejector move closer together, the acoustic ejector sends one or more interrogation pulses towards the reservoir. Based on the interrogation pulses, the system determines when the movement of the reservoir has placed a free surface of the fluid in a position where a droplet can be ejected.
Abstract:
Focused acoustic radiation, referred to as tonebursts, are applied to a volume of liquid to generate a set of droplets. The droplets generated are substantially smaller in scale than the focal spot size of the acoustic beam (e.g., the frequency at which the acoustic transducer operates). Further, the droplets have trajectories that are substantially in the direction of the acoustic beam propagation direction. In one embodiment, a first toneburst is applied to temporarily raise a protuberance on a free surface of the fluid. After the protuberance has reached a certain state, a second toneburst is applied to the protuberance to break it into very small droplets. In one embodiment, the state of the protuberance at which the second toneburst is supplied is the time period shortly after the protuberance reaches its maximum height but before the protuberance recedes back into the volume of fluid.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
Methods of ejecting droplets containing a non-Newtonian fluid by an acoustic droplet ejector can include applying a tone burst of focused acoustic energy to a fluid reservoir containing a non-Newtonian fluid at sufficient amplitude to effect droplet ejection according to a tone burst pattern. The tone burst pattern may include three discrete tone burst segments, the first tone burst segment having greater duration than the second and third segments, and third segment having greater duration than the second segment. The exact durations and amplitudes of the tone burst segments can be tuned to influence the ejection properties.