Abstract:
A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.
Abstract:
A method is provided for achieving transfection of host cells using sonoporation. An acoustic radiation generator is positioned in acoustic coupling relationship with respect to a reservoir containing host cells to be transfected, exogenous material to be incorporated into the host cells, and a cell-compatible fluid medium. The acoustic radiation generator is activated to generate acoustic radiation and direct the acoustic radiation into the reservoir in a manner effective to enable transfection of the host cells with the exogenous material.
Abstract:
A method and system are provided for detecting the concentration of an analyte in a fluid sample. The method and system involve analysis of a volatilized, ionized fluid sample using a mass spectrometer or other ionic analyte detection device that provides a signal proportional in intensity to the quantity of ionized analyte detected. The improvement involves replacement of a necessary non-analyte component in the fluid sample with a substitute component that serves the same purpose as the original component but is either more volatile than the original component and/or the analyte or undergoes a reaction to provide lower molecular weight reaction products, and results in an increased intensity in signal and signal-to-noise ratio. Acoustic fluid ejection is a preferred method of generating nanoliter-sized droplets of fluid sample that are then volatilized, ionized, and analyzed. Also provided are zwitterionic compounds suitable as the substitute components that when ionized and heated decompose to provide carbonic dioxide, a nitrogenous species such as ammonia, an amine, or nitrogen gas, and a volatile aromatic compound.
Abstract:
A method is provided for achieving transfection of host cells using sonoporation. An acoustic radiation generator is positioned in acoustic coupling relationship with respect to a reservoir containing host cells to be transfected, exogenous material to be incorporated into the host cells, and a cell-compatible fluid medium. The acoustic radiation generator is activated to generate acoustic radiation and direct the acoustic radiation into the reservoir in a manner effective to enable transfection of the host cells with the exogenous material.
Abstract:
A method and system are provided for detecting the concentration of an analyte in a fluid sample. The method and system involve analysis of a volatilized, ionized fluid sample using a mass spectrometer or other ionic analyte detection device that provides a signal proportional in intensity to the quantity of ionized analyte detected. The improvement involves replacement of a necessary non-analyte component in the fluid sample with a substitute component that serves the same purpose as the original component but is either more volatile than the original component and/or the analyte or undergoes a reaction to provide lower molecular weight reaction products, and results in an increased intensity in signal and signal-to-noise ratio. Acoustic fluid ejection is a preferred method of generating nanoliter-sized droplets of fluid sample that are then volatilized, ionized, and analyzed. Also provided are zwitterionic compounds suitable as the substitute components that when ionized and heated decompose to provide carbonic dioxide, a nitrogenous species such as ammonia, an amine, or nitrogen gas, and a volatile aromatic compound.
Abstract:
A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.
Abstract:
A method is provided for achieving transfection of host cells using sonoporation. An acoustic radiation generator is positioned in acoustic coupling relationship with respect to a reservoir containing host cells to be transfected, exogenous material to be incorporated into the host cells, and a cell-compatible fluid medium. The acoustic radiation generator is activated to generate acoustic radiation and direct the acoustic radiation into the reservoir in a manner effective to enable transfection of the host cells with the exogenous material.
Abstract:
Sample container for holding and transferring a liquid sample and method thereof. The sample container includes an inlet configured to allow a liquid sample to enter a sample container, and an outlet configured to allow one or more droplets of the liquid sample to exit the sample container by one or more acoustic ejections respectively. The inlet and the outlet are in different locations.
Abstract:
A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.
Abstract:
A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.