Abstract:
An apparatus and method for applying a coating to an object such as a container or an injection blow molded bottle comprising initial staging of an object or container onto an application holding unit, which may employ a grounding pin or mechanism to allow for application of a solvent based coating by electrospray techniques, may further be capable of rotating the object or container during the spray application process and may further employ a positive registration means. The object may be spray coated while on the application holding unit. The object may be transferred to a secondary holding unit and subjecting the coated object to solvent evaporation. Initial curing of the coating by UV or infrared is performed while the object is on the secondary holding unit to the point where the object can rest on its base or a bearing surface without risking a loss of integrity of the coating. Finally, the object may be transferred to a final conveying unit, which may incorporate a positive registration means, for final mass curing by UV, infrared or convention heating.
Abstract:
A multifunctional thermochemically cured coating which provides noise reduction and weight reduction in combination with thermal insulating and corrosion resistant properties. The composition comprises an epoxy resin with a weight per epoxide of 175 to 950, a mixed methylphenyl hydroxyl functional silicone polymer, a catalyst, a silane, an anti-corrosive pigment, an inert film reinforcing pigment, calcium silicate fibers, a mixture of ground synthetic silicone rubber, silica, and fillers, and an organic solvent.
Abstract:
The invention provides a method of obtaining improvements in the appearance of articles having both vertically and horizontally orientated surfaces and a coating composition for use in said method. The coating composition of the invention has a film-forming component (a) and a rheology control agent (b) having substantially colorless, substantially inorganic microparticles (i) and a compound (ii) comprising the reaction product of an amine and an isocyanate. A particularly preferred method of the invention requires applying the coating composition of the invention to an article having at least one horizontally orientated surface and at least one vertically orientated surface so as to provide a coated horizontally orientated surface and a coated vertically orientated surface, wherein the coated vertically orientated surface has improved sag resistance, most preferably having a sag resistance of at least 1.2 mils. The coated surfaces are then cured to provide a cured horizontally orientated film having an improved surface appearance, most preferably a surface appearance having a DOI of at least 70.
Abstract:
A method for depositing a substance on a substrate that involves forming a supercritical fluid solution of at least one supercritical fluid solvent and at least one solute, discharging the supercritical fluid solution through an orifice under conditions sufficient to form solid particles of the solute that are substantially free of the supercritical fluid solvent, and electrostatically depositing the solid solute particles onto the substrate. The solid solute particles may be charged to a first electric potential and then deposited onto the substrate to form a film. The solute particles may have a mean particle size of less than 1 micron.
Abstract:
Methods and systems for coating at least a portion of a medical device (e.g., a stent structure) include providing a plurality of coating particles (e.g., monodisperse coating particles) in a defined volume. For example, the particles may be provided using one or more nozzle structures, wherein each nozzle structure includes at least one opening terminating at a dispensing end. The plurality of coating particles may be provided in the defined volume by dispensing a plurality of microdroplets having an electrical charge associated therewith from the dispensing ends of the one or more nozzle structures through use of a nonuniform electrical field between the dispensing ends and the medical device. Electrical charge is concentrated on the particle as the microdroplet evaporates. With a plurality of coating particles provided in the defined volume, such particles can be moved towards at least one surface of the medical device to form a coating thereon (e.g., using an electric field and/or a thermophoretic effect).
Abstract:
The invention relates to a method for electrically controlling a flow of material, wherein a single- or multi-component, essentially polymer-based material (1), such as plastics, elastomer or the like, is charged electrically (I) and sprayed (II) in an electrical field (E) to a three-dimensional mould (2)/target (3). The method of the invention makes use of the mould (2)/target (3) set at an electric potential and provided with two or more treatment blocks (Li) to be set at voltage levels different from each other, especially for coordinating the courses of sprayed material particles and the electrical field (E) affecting the same, in such a manner that each section/area of the mould/target surface forms a material layer of desirable thickness in the spraying cycle (II). The invention relates also to an apparatus operating in accordance with the method.
Abstract:
A removal of static electricity from a conductive coating can be used in an electrostatic coating system. A conductive liquid is atomized or formed into droplets and supplied to an electric insulating vessel. A supply port is thereby insulated from a stored liquid surface by making use of electric insulation characteristics of air. The liquid is atomized and ionized while applying a high voltage to the liquid storage system, and sprayed onto a charged article to discharge it.
Abstract:
Disclosed is a method for coating a golf ball, wherein the coating efficiency of the paint is high and a uniform coating can be formed. According to the method, the paint is sprayed on a golf ball moving with rotation on the circumference of a circle having a diameter of 0.5 to 1.5 m from a disc charged with 60,000 to 130,000 V, which is rotating at 20,000 to 40,000 rpm and is inclined or moving in the vertical direction, or a paint is sprayed in a direction at an angle of 45.degree. or less to the horizontal direction from a disc charged with the above voltage, which is rotating at the above number of revolutions, to coat the golf ball so that a ratio of the maximum film thickness to the minimum film thickness may be 1.5 or less after one round of coating.
Abstract:
A method and apparatus for electrostatically spray coating substrates with layers of material having uniform thicknesses is provided. A substrate to be coated is electrically grounded and an electrically charged, atomized spray of coating material is directed toward the substrate from a nozzle. The nozzle is traversed along a length of the substrate, which can also be rotated, to coat substantially the entire surface of the substrate. In order to compensate for thickness variations in the applied coating, the speed of traversal of the nozzle is varied. In a preferred embodiment, where photoreceptor drums are produced by spraying a photoreceptor material onto a cylindrical substrate, the speed of traversal of the nozzle is reduced as it approaches at least one end of the cylindrical substrate.
Abstract:
A method and system are provided for dispensing only that amount of coating material which is required for coating a series of one or more articles to be coated by the coating material. The method and system include the step of, and apparatus for, feeding that amount of coating material to an intermediate container. The intermediate container receives the coating material from a color changer. The connection between color changer and intermediate container is so designed that no electrical current flow exists between these two components, even when using electrically conducting coating material. The coating material is electrostatically charged at an atomizer downstream from the intermediate container during a spray operation. When a coating material change is required, the amount of coating material dispensed into the intermediate container has essentially been exhausted, making it possible to clean the system components affected by the coating material change with very little waste and within a short time, so that the new coating material will not be contaminated by residue of the previously used coating material.