Abstract:
A method for producing a silica container having a rotational symmetry is provided. The method includes forming a preliminarily molded article by feeding a powdered substrate's raw material to an inner wall of an outer frame having aspiration holes with rotating the frame, and forming a silica substrate. The preliminarily molded article is aspirated from an outer peripheral side with controlling a humidity inside the outer frame by ventilating gases present in the outer frame with charging from inside the preliminarily molded article a gas mixture comprised of an O2 gas and an inert gas and made below a prescribed dew-point temperature by dehumidification, and at the same time heated from inside the preliminarily molded article by a discharge-heat melting method with carbon electrodes, thereby making an outer peripheral part of the preliminarily molded article to a sintered body while an inner peripheral part to a fused glass body.
Abstract:
The present disclosure is directed to a doped silica-titania glass, DST glass, consisting essentially of 0.1 wt. % to 5 wt. % halogen, 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the halogen content can be in the range of 0.2 wt. % to 3 wt. % along with 50 ppm-wt. to 6 wt. % one or more oxides of Al, Ta and Nb, 3 wt. % to 10 wt. % TiO2 and the remainder SiO2. In an embodiment the DST glass has an OH concentration of less than 100 ppm. In another embodiment the OH concentration is less than 50 ppm. The DST glass has a fictive temperature Tf of less than 875° C. In an embodiment Tf is less than 825° C. In another embodiment Tf is less than 775° C.
Abstract:
A method to form quartz glass ingots of ultra low contamination and defect levels by firing a high-purity quartz form as the feedstock, wherein the quartz glass ingot is free-formed on a platen rotating concentrically with the feedstock quartz article.
Abstract:
A method for manufacturing an optical fiber preform, including: a) providing a lining tube as a substrate tube, and doping and depositing by a PCVD or an MCVD process; b) in the reacting gas of silicon tetrachloride and oxygen, introducing a fluorine-containing gas for fluorine doping, introducing germanium tetrachioride for germanium doping, ionizing the reacting gas in the lining tube through microwaves to form plasma, depositing the plasma on the inner wall of the lining tube in the form of glass; c) after the completion of deposition, processing the deposited lining tube into a solid core rod by melting contraction through an electric heating furnace; d) sleeving the solid core rod into a pure quartz glass jacketing tube and manufacturing the two into an optical fiber preform; and e) allowing the effective diameter d of the optical fiber preform to become between 95 and 205 mm.
Abstract:
A known method for producing a hollow cylinder of synthetic quartz glass comprises the steps of: (a) providing an inner tube of synthetic quartz glass having an inner bore defined by an inner wall, (b) cladding the inner tube (3′) with an SiO2 soot layer (4′), and (c) sintering the SiO2 soot layer with formation of the hollow cylinder. Starting therefrom, to indicate a method in which on the one hand the sintering process is completed before the hollow cylinder is further processed together with the core rod, and in which on the other hand a complicated machining of the inner bore of the hollow cylinder of quartz glass is not required, the invention suggests that during sintering the surface temperature of the inner wall of the inner tube should be kept below the softening temperature.
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
Abstract:
A method for producing an optical fiber preform according to the present invention includes an etching step of heating a silica-based glass tube using a heat source continuously traversed in the longitudinal direction of the glass tube to etch the inner surface portion of the glass tube containing impurities while an etching gas is allowed to flow into the glass tube. The glass tube has a maximum alkali metal concentration of 500 to 20,000 atomic ppm, a maximum chlorine concentration of 0 to 1000 atomic ppm, and a maximum fluorine concentration of 0 to 10,000 atomic ppm. In the etching step, the maximum temperature of the outer surface of the glass tube is in the range of 1900° C. to 2250° C., and the heating time is set to a time equal to or less than a time (min) given by ( 7 - alkai metal concentration ppm 5000 ) .
Abstract:
A fiber preform, including: a fiber core rod and an outer cladding layer. The ratio of the diameter of the fiber core rod to the diameter of the core layer thereof is 2.1-2.8. The fiber core rod and a small fluorine-doped quartz glass tube are melted to form a core rod assembly. The ratio of the diameter difference between the core rod assembly and the fiber core rod to the diameter of the core layer is 0.5-2.2. The relative refractive index difference of fluorine-doped quartz glass relative to purified quartz glass ΔF is −0.20% to −0.35%. The core rod assembly is arranged with a large purified quartz glass tube, or directly deposited with a SiO2 glass cladding layer. A ratio of an effective diameter of the fiber preform to the diameter of the core rod assembly is 2.0-5.6. Methods for manufacturing the preform and a fiber are also provided.
Abstract:
The present invention relates to a method for manufacturing a preform for optical fibers, wherein deposition of glass-forming compounds on the substrate takes place. The present invention furthermore relates to a method for manufacturing optical fibers, wherein one end of a solid preform is heated, after which an optical fibre is drawn from said heated end.
Abstract:
The invention relates to a method for the manufacture of a lens of synthetic quartz glass with increased H2 content, in particular for a lens for an optical system with an operating wavelength of less than 250 nm, in particular less than 200 nm, with the steps: providing a precursor product of synthetic quartz glass, in particular with a first H2 content of less than 2·1015 molecules/cm3, with a circumferential border surface and two base surfaces lying on opposite sides, wherein at least one partial surface of at least one of said base surfaces has a curvature, and treating the precursor product in an H2-containing atmosphere in order to produce a precursor product of synthetic quartz glass with a second H2 content that is increased in relation to the first H2 content, in particular with a second H2 content of more than 1016 molecules/cm3, and measuring at least one optical property of said precursor product with said second H2 content.
Abstract translation:本发明涉及一种用于制造具有增加的H 2含量的合成石英玻璃透镜的方法,特别是用于具有小于250nm,特别是小于200nm的工作波长的光学系统的透镜,步骤 :提供合成石英玻璃的前体产物,特别是具有小于2×1015分子/ cm 3的第一H 2含量,周边边界表面和位于相对侧上的两个基底表面,其中至少一个部分表面至少 所述基面之一具有曲率,并且在含H2气氛中处理前体产物,以便产生具有相对于第一H 2含量增加的第二H 2含量的合成石英玻璃的前体产物,特别是与 大于1016分子/ cm 3的第二H 2含量,并测量所述前体产物与所述第二H 2含量的至少一种光学性质。