Abstract:
A tubular reactor characterized by having short static mixing elements separated by coalescing zones is used to conduct multiphase liquid/liquid reactions. Small droplets of one of the phases are dispersed into the other phase by the static mixing elements. These droplets coalesce and at least partially phase separate as the mixture passes through the subsequent coalescing zone. The tubular reactor is particularly suitable for nitrating organic compounds while forming low levels of improperly nitrated by-products and low levels of nitrophenolics.
Abstract:
The present invention relates to a continuous adiabatic process for preparing nitrochlorobenzene, in which the waste sulfuric acid produced during the practice of the process is reconcentrated and recycled into the nitration reaction.
Abstract:
Processes for the preparation of parylene dimers, and more particularly to processes for the preparation of derivatives of octafluoro-[2,2]paracylophane, otherwise known as AF4.
Abstract:
Methods are provided for making Anagrelide base from 2,3-dichlorobenzaldehyde. A method is also provided for making an intermediate compound ethyl N-(2,3-dichloro-6-nitrobenzyl)glycine from 2,3-dichlorobenzaldehyde and for reducing the glycine compound using either SnCl2 or a specially defined catalyst. A cyclization method to form Anagrelide base from the corresponding iminoquinazoline compound is further provided.
Abstract:
A tubular reactor characterized by having short static mixing elements separated by coalescing zones is used to conduct multiphase liquid/liquid reactions. Small droplets of one of the phases are dispersed into the other phase by the static mixing elements. These droplets coalesce and at least partially phase separate as the mixture passes through the subsequent coalescing zone. The tubular reactor is particularly suitable for nitrating organic compounds while forming low levels of improperly nitrated by-products and low levels of nitrophenolics.
Abstract:
Disclosed herein is an improvement in a method for making compounds having the structural formulae (I) or (II): wherein: X is a) phenyl; lower phenylalkoxy; phenoxy; or benzyl; or b) one substituent from group a) and one or more substituents selected from C1-C4 alkoxy; hydroxyl; halogen; lower alkyl; and lower alkylthio; or c) along with the phenyl to which it is attached, forms a multiple fused ring heterocycle such as dibenzofuranyl; Y is H, C1-C4 alkanoyl, C1-C4 haloalkenoyl, dialkoxyphosphoryl, alkylaminocarbonyl, haloalkylsulfonyl, or C1-C4 alkoxy carbonyl; and R is H, C1-C6 alkyl, C1-C6 alkoxy, C3-C6 cycloalkoxy, haloalkyl, alkoxyalkyl, arylalkoxy, alkenyl, alkylthio, alkoxycarbonyl, alkylamino, heteroaryl, arylalkyl, haloalkoxy, aryloxy, or C3-C6 cycloalkyl; and Z is O or S, wherein the improvement comprises the steps of: A) selecting as a starting material a compound of the structural formula B) dissolving compound III in an organic solvent selected from the group consisting of methyl t-butyl ether, ethylene glycol dimethyl ether, 2-methoxyethyl ether, acetonitrile, and acetic acid, and C) nitrating with nitric acid to form a compound of the structural formula
Abstract:
The invention concerns a method for treating an aqueous solution derived from sluicing of crude mononitrated or dinitrated aromatic compounds obtained by nitration of the corresponding aromatic compounds, consisting in: (a) contacting said aqueous solution with said aromatic compound thereby obtaining an aqueous phase and an organic phase; (b) recycling said organic phase in the nitration process; (c) distilling said aqueous phase; (d) recycling the resulting concentrated acid solution in the nitration process; (e) recycling or eliminating the recuperated water after distillation.
Abstract:
Dinitro aromatic compounds are improvedly prepared by reacting an aromatic compound with a nitric acid nitrating agent and thence separating the nitrating acid from the process stream thus formed, the process stream containing said at least one dinitro aromatic compound and also having a fraction of the nitrating acid dissolved therein, the subject process also comprising (a) distilling/stripping nitric acid from said process stream, (b) recovering nitric acid from the top of the distillation/stripping vessel and recycling same to the nitration reaction and (c) washing the process stream which contains the at least one dinitro aromatic compound, but having the nitric acid removed therefrom.
Abstract:
Porous microcomposites have been prepared from perfluorinated ion-exchange polymer and metal oxides such as silica using the sol-gel process. Such microcomposites possess high surface area and exhibit extremely high catalytic activity. The microcomposites catalyze, among others, the reaction between organic aromatic compounds and olefins.
Abstract:
Picric acid, namely, 2,4,6-trinitrophenol, is readily and effectively prepared by nitrating o-nitrophenol and/or p-nitrophenol into at least one dinitrophenol in a nitric acid medium of reaction, characteristically essentially consisting of nitric acid or immixture thereof with a strong co-acid, the at least one dinitrophenol remaining soluble in the medium of reaction, and therein completing nitration of the at least one dinitrophenol and precipitating picric acid therefrom.