Abstract:
A photoluminescence sensor for detecting a photoluminescent light from a toluminescent material is disclosed. In a preferred embodiment the photoluminescence sensor comprises: a source of light; a concave mirror having at least one perforation for passing the source light through the at least one perforation; an optical waveguide having proximal and distal ends with the photoluminescent material being disposed at the distal end; an objective for directing the source light into the proximal end of the waveguide; an objective for receiving photoluminescent light and for focusing the photoluminescent light onto the perforated concave mirror; a liquid filter for passing the photoluminescent light reflected from the perforated concave mirror to a detector to detect the photoluminescent light. The sensor can also include a chopper disposed at the output end of the objective for modulating the light source at a select frequency and a lock-in amplifier tuned to measure the output from the detector at the select frequency.
Abstract:
A system for measuring electromagnetic radiation originating from the hemhere corresponding to a solid angle of 2.pi. is provided wherein a highly sensitive low-inertia detector is disposed below a transmissive dome and wherein the chopped light detection method is utilized. There are provided above the transmissive dome two similarly or differently designed modulators which are in the shape of dome segments and which are fitted into each other. At least one of the modulators rotates about their common vertical axis or the modulators may both rotate about the common vertical axis, either at the same or a different speed in the same direction or in opposite directions.
Abstract:
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Abstract:
An eye-tracking system comprises one or more optical sources configured to emit infrared light with a narrow spectral linewidth toward an eye of a user and one or more shuttered optical sensors configured to receive infrared light reflected off the eye of the user. A controller is configured to pulse the one or more optical sources on and off, such that a pulse-on duration is less than a duration needed to fully thermalize each optical source. The controller is also configured to open the shuttered optical sensor for a detection duration based on the pulse-on duration. A conformation of the user's eye may be indicated based on infrared light received at the shuttered optical sensor during the detection duration.
Abstract:
With the object of preventing deterioration of or damage to a photodetector caused by excessive light by more reliably preventing the excessive light from entering the photodetector, a microscope of the present invention is provided with a high-sensitivity detector, such as an HPD, a GaAsP, an EM-CCD or the like, that detects observation light coming from a specimen, a box-shaped casing that has an opening that allows contained items to be placed therein and removed therefrom and that covers the high-sensitivity detector, a door that can close off the opening of the casing, a switch that restricts light detection by the high-sensitivity detector by turning on and off a drive voltage to be applied to the high-sensitivity detector, and an opening restricting mechanism that allows the opening of the casing in the closed state imposed by the door to be opened only when the light detection by the high-sensitivity detector is restricted by the switch.
Abstract:
A light sensor includes a primary lens, and a light device spaced from the primary lens. A control structure is disposed between the primary lens and the light device. An actuator is coupled to the control device to move the control device relative to the primary lens and the light device to control the passage of light between the primary lens and the light device. The light sensor may include a light emitting sensor having an array of individual light emitters, or a light detecting sensor having a light detector. The control structure may include an array of secondary bi-telecentric lenses for use with the light emitting sensor, or a plate having an aperture extending therethrough for use with the light detecting sensor.
Abstract:
A method of estimating non-linearity in a response of an optical detector comprises emitting optical radiation at different intensities. The method includes, at each intensity: amplitude modulating the emitted optical radiation at a modulating frequency to produce amplitude modulated optical radiation; detecting the amplitude modulated optical radiation with the optical detector to produce a detected waveform; and generating a Fourier transform of the detected waveform that includes a fundamental frequency equal to the modulating frequency and harmonics thereof. The method further includes estimating the non-linearity in the response of the optical detector based on a change in an amplitude of a second harmonic of the fundamental frequency relative to an amplitude of the fundamental frequency across the Fourier transforms corresponding to the different intensities.
Abstract:
An automated shutter for dark acclimating a sample, comprising a base and a head mounted to the base and movable between an open and closed position. The automated shutter further comprises one or more artificial light sources and one or more optical detectors disposed in said head or base, and wherein the head is contiguous with the sample when moved into the closed position. Another embodiment comprises an enclosure placed over a sample to be dark acclimatized, with one or more artificial light sources and optical detectors disposed within or closely adjacent to said enclosure which is configured to be transformed between an optically transparent state and an optically opaque state.
Abstract:
A lighting device includes a pyroelectric sensor, a shutter and a lighting control unit. The lighting control unit is configured, when the lighting load is turned off, to turn the lighting load on if the pyroelectric sensor detects a change in infrared radiation. The lighting control unit is also configured, when the lighting load is turned on, to turn the lighting load off if a repetition count or time of a lighting retention time reaches a specified count or time, respectively, with no change in infrared radiation detected through the pyroelectric sensor within each lighting retention time per the passage of lighting retention time.
Abstract:
An automated shutter for dark acclimating a sample, comprising a base and a head mounted to the base and movable between an open and closed position. The automated shutter further comprises one or more artificial light sources and one or more optical detectors disposed in said head or base, and wherein the head is contiguous with the sample when moved into the closed position. Another embodiment comprises an enclosure placed over a sample to be dark acclimatised, with one or more artificial light sources and optical detectors disposed within or closely adjacent to said enclosure which is configured to be transformed between an optically transparent state and an optically opaque state.