Abstract:
The invention relates to a unit and method for detection of presence of oil on the water surface or in the water column. Unit comprises a sensor, whereby the sensor is connected to electronic compartment followed by microprocessor controller with embedded software for carrying out necessary analyses of reflected signals received by the sensor. The microprocessor controller is connected to communication means for transmitting an alarm signal through external communication line in case of oil pollution. All elements mentioned above are supplied by external power supply and are accommodated into a waterproof housing. The sensor comprises the probe light source formed by a pulsed UV LED, collimating optics and narrow band optical filter, at least one dichroic mirror, a projection-receiving lens, at least one optical filter, at least one photodetector and a reference photodetector.
Abstract:
A sensor and analyzer for measuring an analyte in a liquid sample are disclosed. The sensor includes a substrate with a reservoir disposed therein. The reservoir may include a top surface and a bottom surface, at least one transparent portion forming at least a part of the bottom surface of the reservoir, and a reflector disposed on the upper surface of the reservoir at a location opposite the at least one transparent portion. The analyzer may include a support surface, an aperture extending through the support surface, a light source disposed below the support surface and oriented so that at least a portion of the light emitted from the light source passes through the aperture, and a detector configured to measure an intensity of light received at the detector.
Abstract:
The invention relates to a device (100) and a corresponding method for thermoacoustic sensing, in particular thermoacoustic imaging, the device (100) comprising: a) an irradiation unit (10) configured to generate electromagnetic and/or particle energy exhibiting a first modulation, the first modulation comprising at least one frequency and to continuously emit the energy towards a target (1), whereby acoustic waves are continuously generated in the target, the acoustic waves exhibiting a second modulation, the second modulation comprising the at least one frequency and/or a harmonic frequency of the at least one frequency; b) a detection unit (20) configured to simultaneously detect the acoustic waves exhibiting the second modulation while the energy exhibiting the first modulation is being continuously emitted towards the target (1); and c) a processing unit (30) configured to determine at least one thermoacoustic value of an amplitude and/or a phase of the second modulation of the acoustic waves at the at least one frequency and/or at a harmonic frequency of the at least one frequency. The invention allows for fast and economic thermoacoustic sensing, in particular imaging of a region of interest of an object.
Abstract:
A sensor and analyzer for measuring an analyte in a liquid sample are disclosed. The sensor includes a substrate with a reservoir disposed therein. The reservoir may include a top surface and a bottom surface, at least one transparent portion forming at least a part of the bottom surface of the reservoir, and a reflector disposed on the upper surface of the reservoir at a location opposite the at least one transparent portion. The analyzer may include a support surface, an aperture extending through the support surface, a light source disposed below the support surface and oriented so that at least a portion of the light emitted from the light source passes through the aperture, and a detector configured to measure an intensity of light received at the detector.
Abstract:
The invention relates to a method for photometrically investigating sample radiations of at least one sample, which are caused by the radiation of N emitter elements of at least one radiation element wherein said N emitter elements are emitting radiation during time periods which at least partially overlap, to detect the sample radiation of at least two samples as a sum signal during time periods which at least partially overlap and to evaluate the sample radiation of at least one individual sample from said sum signal.
Abstract:
A cavity ring down system is optimized to precisely measure trace gases or particles in an air sample by using time sampling detection and multiple-sample averaging resulting in a high signal-to-noise ratio. In one embodiment, a cavity ring down system is programmed to measure the rise time and the fall time of the light level in an optical cavity. The cavity ring down system is programmed to integrate a plurality of sample portions during a rise time and a plurality of sample portions during a fall time (in alternate intervals) to obtain a time constant with no sample present and a time constant with sample present. The measurements are used to calculate trace gases in the air sample.
Abstract:
In a medical pulse oximetry sensor (10) at least two light emitting diodes (16, 18) are disposed to emit red light and infrared light through a portion of a subject's anatomy with a typically high oxygenated blood throughput. Typically, this area is also relatively narrow, to allow the light to pass through the area with acceptable attenuation, such as a finger or an earlobe. Light emitted from the LEDs (16, 18) is incumbent upon an integrated circuit (22) printed from a single CMOS substrate (21). The integrated circuit (22) includes all preprocessing and post-processing elements needed to convert the detected light signals into a pulse oximetry measurement. These elements include a photodetector (20), a photo pre-amplifier (40), a sampler/holder (42), an analog to digital converter (44), a microprocessor (46) a rangefinder (48), a timing control circuit (50) and an LED control circuit (52). By integrating all pre and post processing functions into the carriage housing (12), the system becomes more efficient, less expensive to manufacture, and more robust to ambient light and x-ray radiation.
Abstract:
A cavity ring down system is optimized to precisely measure trace gases or particles in an air sample by using time sampling detection and multiple-sample averaging resulting in a high signal-to-noise ratio. In one embodiment, a cavity ring down system is programmed to measure the rise time and the fall time of the light level in an optical cavity. The cavity ring down system is programmed to integrate a plurality of sample portions during a rise time and a plurality of sample portions during a fall time (in alternate intervals) to obtain a time constant with no sample present and a time constant with sample present. The measurements are used to calculate trace gases in the air sample.
Abstract:
A device (110) for determining at least one optical property of a sample (112) is proposed. The device (110) comprises a tuneable excitation light source (114; 410) for applying excitation light (122) to the sample (112). The device (110) furthermore comprises a detector (128, 130; 312) for detecting detection light (132, 136; 314) emerging from the sample (112). The excitation light source (114; 410) comprises a light-emitting diode array (114), which is configured at least partly as a monolithic light-emitting diode array (114). The monolithic light-emitting diode array (114) comprises at least three light-emitting diodes (426) each having a different emission spectrum.
Abstract:
A reflected ultraviolet light measuring device, a measuring method for measuring ultraviolet light reflection intensity by using the reflected ultraviolet light measuring device, and a valuation method for evaluating ultraviolet light absorbability of an object by using measuring results by the method, said device comprising an irradiating unit comprising a at least one light emitting diode for irradiating ultraviolet light on an object, and a light receiving unit for receiving a reflected light from the object, wherein the light receiving unit is arranged at an angle in which a regular reflected light from the object does not enter.