Abstract:
A spectrometer includes a light source that radiates illumination light, and a measurement unit that measures measurement light in which illumination light is reflected by a medium. In a case where an illumination region that is a region in which the medium is irradiated with illumination light is smaller than a measurement region that is a region of the medium measurable by the measurement unit and in which the movement of the medium in the direction is within a range of an acceptable fluctuation amount, the illumination region is included in the measurement region.
Abstract:
A test device, test system, and control method of the test device, which defines a light irradiating area in a reactor to prevent a decrease in magnitude of a detected signal that may result due to scattering of light that has penetrated other area of the reactor than an area containing an object for detection and improve a dynamic range. A test device may include a light source configured to irradiate light; a reactor configured to include at least one first area to contain an object for detection; and a photo detector configured to receive light that has been irradiated from the light source and has passed the reactor that contains the object for detection, wherein the light source is configured to limitedly irradiate the light to the first area of the reactor.
Abstract:
The invention relates to a device (1) for the light spectroscopic analysis of a small amount of a liquid sample, comprising a receiving point (3) for receiving small amounts of the liquid sample, and light conductors (5, 6) which guide light of a light source to the sample and guide signal light from the sample in the direction of a detector, and is characterised in that an illumination source (7) is arranged below the receiving point (3), and a region (8) below the receiving point (3) which is permeable for the light of the illumination source (7), is provided such that the illumination light illuminates the receiving point (3).
Abstract:
A multi-focal selective illumination microscopy (SIM) system for generating multi-focal patterns of a sample is disclosed. The multi-focal SIM system performs a focusing, scaling and summing operation on each multi-focal pattern in a sequence of multi-focal patterns that completely scan the sample to produce a high resolution composite image.
Abstract:
A system of measuring hemoglobin and bilirubin parameters in a whole blood sample using optical absorbance. The system includes an optical-sample module, a spectrometer module, an optical fiber module optically connecting the optical-sample module to the spectrometer module, and a processor module. The optical-sample module has a light-emitting module having a LED light source, a cuvette and a calibrating-light module. The processor module receives and processes an electrical signal from the spectrometer module and transforms the electrical signal into an output signal useable for displaying and reporting hemoglobin parameter values and/or total bilirubin parameter values for the whole blood sample.
Abstract:
An efficient absorption spectroscopy system is provided. The spectroscopy system may be configured to measure solid, liquid or gaseous samples. Vacuum ultra-violet wavelengths may be utilized. Some of the disclosed techniques can be used for detecting the presence of trace concentrations of gaseous species. A preferable gas flow cell is disclosed. Some of the disclosed techniques may be used with a gas chromatography system so as to detect and identify species eluted from the column. Some of the disclosed techniques may be used in conjunction with an electrospray interface and a liquid chromatography system so as to detect and identify gas phase ions of macromolecules produced from solution. Some of the disclosed techniques may be used to characterize chemical reactions. Some of the disclosed techniques may be used in conjunction with an ultra short-path length sample cell to measure liquids.
Abstract:
Methods are provided to identify spatially and spectrally multiplexed probes in a biological environment. Such probes are identified by the ordering and color of fluorophores of the probes. The devices and methods provided facilitate determination of the locations and colors of such fluorophores, such that a probe can be identified. In some embodiments, probes are identified by applying light from a target environment to a spatial light modulator that can be used to control the direction and magnitude of chromatic dispersion of the detected light; multiple images of the target, corresponding to multiple different spatial light modulator settings, can be deconvolved and used to determine the colors and locations of fluorophores. In some embodiments, light from a region of the target can be simultaneously imaged spatially and spectrally. Correlations between the spatial and spectral images over time can be used to determine the color of fluorophores in the target.
Abstract:
A V-block refractometer capable of enhancing measurement accuracy is provided. An incident angle of measurement light incident on a V-block prism 1 from a collimator lens 48 is changed through the rotation of a motor 7, and the measurement light from the V-block prism 1 at each incident angle is detected by a detector 2. This configuration eliminates the need to provide the detector 2 near the motor 7 as in the conventional art, whereby deterioration in measurement accuracy caused by an increase in load to the motor 7 can be prevented, and the measurement accuracy can be enhanced.
Abstract:
A scanner and an attenuated total reflection (ATR) objective for use in such scanners are disclosed The ATR objective includes first and second optical elements and an input port. The input port receives an input collimated light beam that is focused to a point on a planar face of the first optical element by the second optical element such that substantially all of that portion is reflected by the planar face and no portion of the input beam strikes the planar face at an angle greater than the critical angle. The second optical element also generates an output collimated light beam from light reflected from the planar face that is characterized by a central ray that is coincident with the central ray of the input collimated light beam. A light beam converter receives the first collimated light beam and generates the input collimated light beam therefrom.
Abstract:
Apparatus and method for rendering an image of a fibrous material. The method includes providing parametric fibrous material optical properties derived from actual material fiber samples via the apparatus; providing a parametric virtual light environment; providing a virtual fibrous material array; and rendering an image of the virtual fibrous material array according to the interaction of the parametric fibrous material properties and the parametric virtual light environment.