Abstract:
A method and apparatus for reliable I/O performance anomaly detection. In one embodiment of the method, input/output (I/O) performance data values are stored in memory. A first performance data value is calculated as a function of a first plurality of the I/O performance data values stored in the memory. A first value based on the first performance data value is calculated. An I/O performance data value is compared to the first value. A message is generated in response to comparing the I/O performance value to the first value.
Abstract:
Method and apparatus for detecting a hung up and/or slow-running syscall without affecting the performance of the syscall. Before a syscall is started, a time stamp can be created at a memory address that is distinct from memory addresses to be used by the syscall. While a syscall thread handles the syscall operation, a separate monitor thread monitors the time stamp to track the length of time the syscall operation has been running. If the syscall thread operation exceeds a threshold time limit, then a flag can be sent to a network administrator to indicate that the syscall may be hung up and/or slow running.
Abstract:
An embodiment of a method of writing data begins with a first step of generating a timestamp. A second step issues a query that includes the timestamp to each of a plurality of primary storage devices. The method continues with a third step of receiving a query reply from at least a quorum of the primary storage devices. The query replies indicate that the timestamp is later than an existing timestamp for the data. In a fourth step, the data is mirrored to secondary storage after receiving the query reply from at least the quorum of the primary storage devices. Upon receiving a mirror completion message from the secondary storage, a fifth step issues a write message that includes at least a portion of the data and the timestamp to each of the primary storage devices.
Abstract:
In certain embodiments, a method for modeling interactions with a computer system includes collecting interaction information for each of a number of interaction sessions with a computer system, each interaction session being associated with a corresponding agent system and including one or more states and one or more state transitions. The interaction information for an interaction session includes data for the one or more states and the one or more state transitions of the interaction session. The method further includes, for each of the interaction sessions, identifying the one or more states encountered during the interaction session based on the collected interaction information and generating, based on the one or more states encountered during the interaction session, a trace of the interaction session. The method further includes generating, based on the traces of the interaction sessions, a model of the interaction sessions, the model including the traces for each of the interaction sessions.
Abstract:
A method, an apparatus and computer program for analysing events in a computer system, the method comprises receiving an event, splitting the event into a meta part and a content part. The method further comprises comparing the meta part by matching the meta part with meta parts from previous events. The method further comprises determining that the meta part is new, and when the meta part is determined new storing the meta part and the content part. The method further comprises wherein when the meta part is determined not new, comparing the content part by matching with previous content parts with the same meta part. The method further comprises determining that the content part is new, and when the content part is determined new, storing the content part, thereby enabling analysing events in a computer system and presenting events as new.
Abstract:
Various implementations described herein are directed to a non-transitory computer readable medium having stored thereon computer-executable instructions which, when executed by a computer, may cause the computer to automatically receiving fishing data recorded during a fishing trip. The computer may receive a selection of a first group of subscribers that can access the fishing data. The computer may grant permissions to the first group of subscribers to access the fishing data.
Abstract:
A solution for validating a set of data protection solutions is provided. A validation scenario can be defined, which can include data corresponding to a set of attributes for the validation scenario. The attributes can include a time frame for the validation scenario. The validation scenario also can include a set of backup images to be validated, each of which is generated using one of the set of data protection solutions. The set of backup images can be identified using the time frame. A set of resource requirements for implementing the validation scenario can be determined based on the set of backup images and the set of attributes for the validation scenario.
Abstract:
A non-transitory computer-readable medium having stored thereon computer-executable instructions which, when executed by a computer, cause the computer to receive a first notification that a first cast has been made. The computer-executable instructions may further include instructions, which cause the computer to receive data regarding a video input. The computer-executable instructions may further include instructions, which cause the computer to receive a second notification that a second cast has been made. The computer-executable instructions may further include instructions, which cause the computer to delete a portion of the data regarding the video input that is associated with the first cast in response to receiving the second notification.
Abstract:
Various implementations described herein are directed to a non-transitory computer readable medium having stored thereon computer-executable instructions which, when executed by a computer, may cause the computer to receive motion data or button input recorded by one or more motion sensors or one or more buttons on a wearable device. The computer may determine that the motion data or button input corresponds to a command for operating a marine electronics device. The computer may perform an action corresponding to the command on the marine electronics device.
Abstract:
Various implementations described herein are directed to usage data for a marine electronics device. In one implementation, a non-transitory computer-readable medium has stored thereon a plurality of computer-executable instructions which, when executed by a computer, cause the computer to record usage data at a marine electronics device. The usage data includes data relating to at least one user input to the marine electronics device. The computer-executable instructions are further configured to cause the computer to transmit the usage data to a server computer for analysis and evaluation.