Abstract:
Man-portable radiation generation sources and systems that may be carried by hand to a site of interest by one or two people, are disclosed. Methods of use of such sources and systems are also disclosed. Battery operated radiation generation sources, air cooled radiation generation sources, and charged particle accelerators, are also disclosed. A radiation generation source with a target less than 0.20 mm is also disclosed.
Abstract:
An anode for an X-ray source is formed in two parts, a main part (18) and a collimating part (22). The main part (18) has the target region (20) formed on it. The two parts between them define an electron aperture (36) through which electrons pass reach the target region (20), and an X-ray aperture through which the X-rays produced at the target leave the anode. The anode produces at least the first stage of collimation of the X-ray beam produced.
Abstract:
An X-ray emission device and method for a radiology apparatus comprises a cathode and a rotating anode, the anode being provided with a roughly cylindrical surface. The device forms a beam of electrons that bombards a portion of the roughly cylindrical surface of the anode that constitutes the focal point of emission of the X-rays. The position of the focal point of the anode relative to a reference position is dynamically controlled.
Abstract:
An x-ray device is for creation of high-energy x-ray radiation. In an embodiment, the x-ray device includes a linear accelerator. The linear accelerator, for creation of x-ray radiation, is embodied so as to create an electron beam directed onto a target, of which the kinetic energy per electron amounts to at least 1 MeV. In an embodiment, the x-ray device further includes a beam limiting device, arranged in the beam path of the electron beam between linear accelerator and the target, including an edge region surrounding a beam limiting device opening. A material thickness of the edge region, in a propagation direction of the accelerated electron beam emerging from the linear accelerator, amounting to less than 10% of the average reach of electrons of the created kinetic energy in the material of the edge region.
Abstract:
Man-portable radiation generation sources and systems that may be carried by hand to a site of interest by one or two people, are disclosed. Methods of use of such sources and systems are also disclosed. Battery operated radiation generation sources, air cooled radiation generation sources, and charged particle accelerators, are also disclosed. A radiation generation source, a radiation scanning system, and a target assembly comprising target material having a thickness of less than 0.20 mm are also disclosed.
Abstract:
An X-ray source for producing soft X-rays, the X-ray source comprising: a cathode having an electron-emitting structure supported by a support structure, the electron-emitting structure being at least partially transparent to X-rays within a region bounded by the support structure; an anode having an X-ray emitting surface parallel to the electron-emitting structure of the cathode; and an electrically insulating spacer arranged between the anode and the cathode; wherein the electron-emitting structure of the cathode and the X-ray emitting surface of the anode are arranged such that, in use, the electron-emitting structure is operable to bombard the anode with electrons, causing X-rays to be emitted from the X-ray emitting surface and to pass through the cathode; and wherein the insulating spacer is arranged between the anode and the support structure of the cathode and projects beyond the support structure, across part of the anode, into the said region.
Abstract:
The present application is directed to an anode for an X-ray tube. The X-ray tube has an electron aperture through which electrons emitted from an electron source travel subject to substantially no electrical field and a target in a non-parallel relationship to the electron aperture and arranged to produce X-rays when electrons are incident upon a first side of the target, wherein the target further comprises a cooling channel located on a second side of the target. The cooling channel comprises a conduit having coolant contained therein. The coolant is at least one of water, oil, or refrigerant.
Abstract:
The present invention provides a transmission type radiation generating target which can suppress the exfoliation or the crack of a target layer in an interface between a supporting substrate and the target layer, even when the density of incident electrons has been enhanced or the potential of the target has been enhanced. The transmission type radiation generating target includes a supporting substrate, and a target layer which is arranged on the supporting substrate and generates radiation in response to irradiation with an electron beam, wherein the target layer has an opening through which the supporting substrate is exposed, and the opening overlaps with a position at which the density of the irradiation with the electron beam is maximum.
Abstract:
Strain matching of crystals and horizontally-spaced monochromator and analyzer crystal arrays in diffraction enhanced imaging systems and related methods are disclosed. A DEI system, including strain matched crystals can comprise an X-ray source configured to generate a first X-ray beam. A first monochromator crystal can be positioned to intercept the first X-ray beam for producing a second X-ray beam. A second monochromator crystal can be positioned to intercept the second X-ray beam to produce a third X-ray beam for transmission through an object. The second monochromator crystal has a thickness selected such that a mechanical strain on a side of the first monochromator crystal is the same as a mechanical strain on the second monochromator crystal. An analyzer crystal has a thickness selected such that a mechanical strain on a side of the first monochromator crystal is the same as a mechanical strain on the analyzer crystal.
Abstract:
X-ray apparatus comprises a linear accelerator adapted to produce a beam of electrons at one of at least two selectable energies and being controlled to change the selected energy on a periodic basis, and a target to which the beam is directed thereby to produce a beam of x-radiation, the target being non-homogenous and being driven to move periodically in synchrony with the change of the selected energy. In this way, the target can move so that a different part is exposed to the electron beam when different pulses arrive. This enables the appropriate target material to be employed depending on the selected energy. The easiest form of periodic movement for the target is likely to be a rotational movement.