Abstract:
Embodiments of the present description relate to the field of fabricating microelectronic structures. The microelectronic structures may include a glass routing structure formed separately from a trace routing structure, wherein the glass routing structure is incorporated with the trace routing substrate, either in a laminated or embedded configuration. Also disclosed are embodiments of a microelectronic package including at least one microelectronic device disposed proximate to the glass routing structure of the microelectronic substrate and coupled with the microelectronic substrate by a plurality of interconnects. Further, disclosed are embodiments of a microelectronic structure including at least one microelectronic device embedded within a microelectronic encapsulant having a glass routing structure attached to the microelectronic encapsulant and a trace routing structure formed on the glass routing structure.
Abstract:
A laminate type ceramic electronic component includes a thick film resistor and an overcoat layer so as to prevent defects such as delamination from being caused and to prevent the thick film resistor from being cracked after laser trimming, even when a method is adopted in which an unfired composite laminate is subjected to firing in such a way that an unfired ceramic laminate, an unfired thick film resistor, and an unfired overcoat layer are each integrally sintered. The unfired overcoat layer includes a glass ceramic material containing a ceramic and glass having substantially the same constituents and compositional ratio as those of the glass contained in the unfired ceramic layer. The respective glass ceramic materials constituting the unfired ceramic layer and the unfired overcoat layer are adjusted so that the ratio of a crystalline phase with a smaller coefficient of thermal expansion than the coefficient of thermal expansion of the fired ceramic layer is higher in the overcoat layer than in the ceramic layer.
Abstract:
A segmentable wiring board includes a ceramic base body, a conductor, a metal plating film and a glass layer, the glass layer having an upwardly-protruding convexity located on the metal plating film. The ceramic base body has a plurality of wiring substrate regions and dividing grooves located in boundaries among the plurality of wiring substrate regions. Moreover, the conductor is located in a periphery of each of the plurality of wiring substrate regions. Moreover, the metal plating film is located on the conductor. Further, the glass layer coveringly extends from an inner surface of each of the dividing grooves of the ceramic base body to the metal plating film.
Abstract:
A circuitized substrate for use in such electrical structures as information handling systems wherein the substrate includes a capacitive substrate as part thereof. The capacitive substrate includes a thin film layer of capacitive material strategically positioned on a conductive layer relative to added electrically conductive elements to in turn provide a plurality of internal capacitors within the final circuitized substrate during operation thereof. A method of making such a circuitized substrate is also provided.
Abstract:
A multilayer ceramic substrate includes an inner layer portion and surface portions that sandwich the inner layer portion in the stacking direction and have an increased transverse strength because of the surface layer portion having a thermal expansion coefficient less than that of the inner layer portion. At least one of the surface portions covers peripheries of main-surface conductive films arranged on a main surface of an inner portion so as to leave central portions of the main-surface conductive films exposed, so that the main-surface conductive films function as via conductors, thereby eliminating the need to provide a via conductor in the surface portions.
Abstract:
Disclosed is a semiconductor package and method for package a semiconductor that has high reliability. A semiconductor package according to the present invention comprises a first substrate on which a circuit pattern and an electrode pad are formed; a second substrate which is adhered to the first substrate and on which a hole is formed; and a solder ball adhered to the electrode pad through the hole formed on the second substrate. Then, the second substrate is used as a solder resist. Accordingly, since the first substrate and the second substrate are formed of same material, the BGA package can be prevented from being cracked and being nonuniform when fired.
Abstract:
There is provided a method of manufacturing a non-shrinkage ceramic substrate, and a non-shrinkage ceramic substrate using the same. A method of manufacturing a non-shrinkage ceramic substrate by firing a ceramic laminate including an internal electrode circuit pattern according to an aspect of the invention may include: laminating at least one constraining ceramic sheet on each of the upper and lower surfaces of the ceramic laminate to form constraining layers; performing a primary firing process on the ceramic laminate having the constraining layers thereon; polishing the surface of the ceramic laminate from which the constraining layers are removed; forming ceramic paste on the polished surface of the ceramic laminate while exposing connection terminals of the internal electrode circuit pattern to the outside environment through openings in the ceramic paste; forming a surface electrode on the surface of the ceramic paste by patterning so that the surface electrode is electrically connected to the connection terminals; and performing a secondary firing process so that the surface electrode adheres to the ceramic paste.
Abstract:
A method including forming a capacitor structure including an electrode material and a ceramic material on the electrode material; and sintering the ceramic material under a condition where a point defect state of the ceramic material defines the ceramic material as insulating without oxidation of the electrode material. A method including depositing a ceramic material on an electrically conductive foil; and sintering the ceramic material in a reducing atmosphere at a temperature that minimizes the mobility of point defects to transition to a level corresponding to a greater conductivity of the ceramic material. An apparatus including a first electrode; a second electrode; and a ceramic material disposed between the first electrode and the second electrode, wherein the ceramic material includes a thickness less than one micron and a leakage current corresponding to a thermodynamic state wherein a concentration of mobile point defects have been optimized.
Abstract:
A wiring board includes an insulating inorganic base, a conductor pattern provided on the base and including silver, a nickel oxide layer provided on the conductor pattern and covering the conductor pattern, and an insulating layer provided on the nickel oxide layer. The conductor pattern includes 5 wt % to 12 wt % of phosphorus. This wiring board is prevented from having migration at the conductor pattern, thus being prevented insulation failure at the conductor pattern.
Abstract:
Conductive powder and paste compositions are formed having desirable electrical and physical properties. The conductive powder and paste compositions may be used in combination with dielectric powder and thick-film paste compositions, which are formed having high dielectric constants, low loss tangents, and other desirable electrical and physical properties, to form capacitors and other fired-on-foil passive circuit components.