Abstract:
A solder layer and an electronic device bonding substrate having high bonding strength of a device and low bonding failure even by a simplified bonding method of a device to a substrate and a method for manufacturing the same are provided.A device bonding substrate 1 including a substrate 2 and a lead free solder layer 5 formed on said substrate has a solder layer 5 consisting of a plurality of layers having mutually different phases, and oxygen concentration on the upper surface of the solder layer is lower than 30 atomic % of the concentration of the metal component which is the most oxidizable among the metal components making up the upper layer of the solder layer 5. Carbon concentration on the upper surface of the solder layer 5 may be lower than 10 atomic % of the concentration of the metal component which is the most oxidizable among the metal components making up the upper layer of the solder layer.
Abstract:
A system and method for encapsulating and protecting a component assembly is disclosed. A barrier system comprising a first layer having a first set of physical properties and a second layer having a second set of physical properties is adapted to protectively surround the component assembly. A continuous transitory material is formed between the first layer and the second layer at associated first and second margin portions such that the first layer and the second layer are not prone to delamination. The physical properties of each layer of the barrier system provide protection to the component assembly from various types of physical and environmental damage.
Abstract:
The present invention provides a circuit device capable of controlling deformation of a circuit device while preventing an insulating layer from peeling from a substrate. The circuit device includes a substrate, an insulating layer formed on the substrate, a filler filled into the insulating layer, a conductive layer formed on the insulating layer, and a circuit element formed on the conductive layer, wherein an average particle diameter of the filler filled into the insulating layer is controlled so that a Young's modulus of a part of the insulating layer on a substrate side can be smaller than a Young's modulus of a part of the insulating layer on an opposite side relative to the substrate side.
Abstract:
A process for fabricating an electrical component having at least one anisotropic electrical quality is provided. The process includes the step of ink-jet printing a plurality of dots of each of at least two electronic inks in a predetermined pattern such that the anisotropic electrical quality is manifested. The ink-jet printing step may further include the steps of: selecting a first electronic ink having a known first electrical characteristic; selecting a second electronic ink having a known second electrical characteristic; determining a positional layout for each of a plurality of dots for each of the first and second electronic inks such that the determined positional layout provides a response of the electrical component in accordance with the anisotropic electrical quality; and printing each of the plurality of dots of each of the first and second electronic inks onto a substrate according to the determined positional layout.
Abstract:
A multilayer ceramic wiring board including a ceramic board having a plurality of through-holes and formed by laminating three or more green sheets of a ceramic material and burning a laminate of the green sheets, and a plurality of conductors provided in the through-holes. Each of the conductors is formed of a ceramic material and a conductive material in combination. The ceramic board is composed of a pair of upper and lower layer portions each having at least an outermost surface layer and an inner layer portion disposed between the upper and lower portions. The conductors are composed of an outer conductor portion formed in the upper and lower layer portions and an inner conductor portion formed in the inner layer portion. The outer conductor portion has a content ratio of the ceramic material higher than that of the inner conductor portion. Accordingly, the generation of cracks in the outer conductor portion disposed at the upper and lower layer portions of the ceramic board can be prevented, and an electric resistance can be reduced.
Abstract:
A heat conductive circuit board includes an insulating layer provided on a metal substrate, and an electrically conductive metal foil formed on the insulating layer, and the insulating layer is formed by impregnating an alumina paper with organic polymer. The alumina paper is made by subjecting a material containing alumina fiber as the principal components to a paper-making process. The insulating layer has excellent properties of heat transfer not only in the thickness direction but also in the surface direction, and thus, the heat conductive circuit board is excellent in heat dissipation properties.
Abstract:
A first embodiment of a substrate for a high-frequency printed wiring board according to the present disclosure is directed to a substrate for a high-frequency printed wiring board, the substrate including: a dielectric layer including a fluororesin and an inorganic filler; and a copper foil layered on at least one surface of the dielectric layer, wherein a surface of the copper foil at the dielectric layer side has a maximum height roughness (Rz) of less than or equal to 2 μm, and a ratio of the number of inorganic atoms of the inorganic filler to the number of fluorine atoms of the fluororesin in a superficial region of the dielectric layer at the copper foil side is less than or equal to 0.08.
Abstract:
A printed wiring board includes a laminated base material including an insulating layer and a conductor layer formed on the insulating layer, and a solder resist layer laminated on the laminated material and including photosensitive resin. The resist layer has surface portion and portion in contact with the laminated material, the conductor layer has pattern including conductor pads in contact with the resist layer such that the pads are positioned in openings in the resist layer, and the resist layer satisfies a first condition that a chemical species derived from a photopolymerization initiator has concentration higher in the portion in contact with the laminated material than concentration in the surface portion and/or a second condition that the chemical species derived from the initiator in the portion in contact with the laminated material has photopolymerization initiating ability higher than a chemical species derived from a photopolymerization initiator in the surface portion.
Abstract:
A connection body includes a circuit board terminals arranged into terminal rows, the terminals rows being arranged in parallel to one another in a widthwise direction orthogonal to a direction in which the terminals are arranged, and an electronic component including bumps arranged into bump rows corresponding to the terminal rows, the bumps being arranged in parallel to one another in a widthwise direction orthogonal to a direction in which the bumps are arranged. The electronic component is connected upon the circuit board interposed by an anisotropic conductive adhesive including electrically conductive particles arranged therein. A distance between mutually opposing terminals of the terminals and bumps of the bumps arranged toward the outer sides of the circuit board and the electronic component is greater than a distance between mutually opposing terminals of the terminals and bumps of the bumps arranged toward their inner sides.
Abstract:
According to an aspect of the invention, a wiring board includes an inorganic insulating layer and a conductive layer disposed on part of one main surface of the inorganic insulating layer. The part of the one main surface of the inorganic insulating layer includes a plurality of first recessed portions each of which has at least partially circular shape in a plan view. Part of the conductive layer enters into the plurality of first recessed portions. According to the aspect of the invention, it is possible to obtain a wiring board capable of reducing disconnection of the conductive layer and therefore having superior electrical reliability.