Abstract:
A method is provided. The method may include engaging a first edge region on a first surface of a substrate with a first support roller; engaging a second edge region on the first surface of the substrate with a second support roller; transporting the substrate over the first and the second support rollers; repeating the following sequence of steps to form a thin film on the substrate: (a) exposing the substrate to a first precursor; (b) supplying a reactive species to the substrate after exposing the substrate to the first precursor; and depositing a vapor on the thin film to form a coating on the thin film.
Abstract:
There is provided a barrier film including a barrier layer having two opposing major surfaces, a first organic layer in direct contact with one of the opposing major surfaces of the barrier layer; a second organic layer in direct contact with the other of the opposing major surfaces of the barrier layer; and a substrate in direct contact with the first organic layer or the second organic layer; wherein the barrier layer comprises buckling deformations with average spacing smaller than average spacing of the buckling deformations in the first or second organic layer.
Abstract:
A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer, and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula. Each R1 independently represents H or methyl; R2 and R3 independently represent an alkyl group having from 1 to 4 carbon atoms or R2 and R3 may together form an alkylene group having from 2 to 7 carbon atoms; and R4 represents an alkyl group having from 1 to 12 carbon atoms. Methods of making the same are also disclosed.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-(meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
Compositions of matter described as urea (multi)-urethane (meth)acrylate-silanes having the general formula RA—NH—C(O)—N(R4)—R11—[O—C(O)NH—RS]n, or RS—NH—C(O)—N(R4)—R11—[O—C(O)NH—RA]n. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi)-urethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making such urea (multi)-urethane (meth)acrylate-silane precursor compounds, and their use in composite films and electronic devices are also described. Methods of using multilayer composite films as barrier films in articles selected from solid state lighting devices, display devices, and photovoltaic devices are also described.
Abstract:
There is provided a vacuum insulation panel envelope having a substrate, a low thermal conductivity organic layer and a low thermal conductivity inorganic stack. The low thermal conductivity inorganic stack will include low thermal conductivity non-metallic inorganic materials and/or low thermal conductivity metallic materials.
Abstract:
A system for processing vapor. The system includes a vapor source for producing a vapor and an outlet conduit coupled to the vapor source for carrying the vapor from the vapor source. Downstream of the vapor source the outlet conduit separates into a vapor bypass conduit and a vapor feed conduit. The system further includes a first vapor control valve disposed in the bypass conduit, a second vapor control valve disposed in the feed conduit, a first vacuum chamber connected to the bypass conduit, and a second vacuum chamber connected to the feed conduit.
Abstract:
A multilayer dielectric film including a first dielectric layer made from a material having a first breakdown field strength and a second dielectric layer disposed on the first dielectric layer made from a material having a different breakdown filed strength. A multilayer film including first and second electrically conductive layers separated by at least first and second dielectric layers is also disclosed. The first dielectric layer is disposed on the first electrically conductive layer, and the second dielectric layer is disposed on the first dielectric layer. The first electrically conductive layer can have at least one of an average surface roughness of at least ten nanometers, a thickness of at least ten micrometers, or an average visible light transmission of up to ten percent. The first dielectric layer may be a polymer and typically has a lower dielectric constant than the second dielectric layer, which may be ceramic.
Abstract:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
Abstract:
The present disclosure generally relates to methods of forming barrier assemblies. Some embodiments include application of an adhesive layer and/or a topsheet to protect the exposed uppermost layer of the barrier stack during roll-to-roll processing. Some embodiments include application of an adhesive layer and/or a topsheet before the exposed, uppermost layer of the barrier film contacts a solid surface or processing roll. Inclusion of an adhesive layer and/or a topsheet protects the oxide layer during processing, which creates an excellent barrier assembly that can be manufactured using roll-to-roll processing.