Abstract:
The present disclosure relates to reactor components and their use, e.g., in regenerative reactors. A process and apparatus for utilizing different wetted areas along the flow path of a fluid in a pyrolysis reactor, e.g., a thermally regenerating reactor, such as a regenerative, reverse-flow reactor, is described.
Abstract:
A method and system for controlling an interface emulsion layer within an oil treatment vessel includes injecting a water flow through a plurality of radial eductors arranged about a radial eductor manifold located in the brine water layer. Each radial eductor is oriented vertically to the radial eductor manifold and the horizontal axis of the oil treatment vessel. The water flow through the plurality of radial eductors causes a swirling flow pattern in a volume of water around each radial eductor that is effective for promoting a collapse of the interface emulsion layer. The water flow through each radial eductor, which may be a recycled water flow, may be in a range of about 1 to 5 feet per minute.
Abstract:
An apparatus for oxidation of a C8-C12 alkylbenzene reactant to a C8-C12 alkylbenzene hydroperoxide product, the re-actor can comprise: a flow reactor comprising a reactant inlet, an oxidate product outlet, wherein the reactor is configured to provide a liquid flow from the reactant inlet to the product outlet, a gas inlet configured to introduce an oxygen-containing gas into the reactor and an inlet sparger configured to flow gas bubbles comprising the oxygen-containing gas within the liquid flow, and wherein: the inlet sparger is configured to flow the gas bubbles having a diameter of 1.0 mm to 5.0 mm over a gas bubble residence time from 1 to 200 seconds, and/or the inlet sparger configured to flow the gas bubbles such that greater than or equal to 80% of the gas bubbles do not coalesce into larger bubbles over a gas bubble residence time of 1 to 200 seconds.
Abstract:
The present invention includes a reactor main body (4) that is formed into a tubular shape having an axis (O) as the center and accumulates a slurry (S); a gas supply line (10) for incorporating a synthesis gas (G) into the reactor main body (4), and a sparger part (5) that is disposed in a lower portion within the reactor main body (4), communicates with the gas supply line (10), and sprays the synthesis gas (G). The sparger part (5) includes a header tube (15) in which a plurality of openings are formed so as to be separated from each other in a first direction and which sprays the synthesis gas (G) from the openings, and a pair of wall surface parts that protrude from the header tube (15), on opposing sides of the plurality of openings and in a direction orthogonal to the first direction.
Abstract:
A unit for processing a liquid/gas phase mixture, a mercaptan oxidation apparatus, and a method of processing a liquid/gas phase mixture are provided. In an embodiment, a unit for processing a liquid/gas phase mixture includes a vessel that is adapted to receive the liquid/gas phase mixture and a distributor that is disposed in the vessel. The distributor is adapted for flow of the liquid/gas phase mixture into the vessel, and the distributor includes a first outlet pipe that is horizontally disposed within the vessel. The first outlet pipe includes top orifices and bottom orifices that are spaced along the first outlet pipe, and the first outlet pipe is in fluid communication with the vessel through the top orifices and the bottom orifices. The top orifices have a smaller cross-sectional area than the bottom orifices.
Abstract:
A process includes periodically or continuously introducing an olefin monomer and periodically or continuously introducing a catalyst system or catalyst system components into a reaction mixture within a reaction system, oligomerizing the olefin monomer within the reaction mixture to form an oligomer product, and periodically or continuously discharging a reaction system effluent comprising the oligomer product from the reaction system. The reaction system includes a total reaction mixture volume and a heat exchanged portion of the reaction system comprising a heat exchanged reaction mixture volume and a total heat exchanged surface area providing indirect contact between the reaction mixture and a heat exchange medium. A ratio of the total heat exchanged surface area to the total reaction mixture volume within the reaction system is in a range from 0.75 in−1 to 5 in−1, and an oligomer product discharge rate from the reaction system is between 1.0 (lb)(hr−1)(gal−1) to 6.0 (lb)(hr−1)(gal−1).
Abstract:
Systems and apparatus for ionic liquid catalyzed hydrocarbon conversion, such as alkylation, using vaporization to remove reaction heat from an ionic liquid reactor and to provide mixing therein, wherein hydrocarbon vapors are withdrawn from the ionic liquid reactor and the withdrawn hydrocarbon vapor is recovered by a hydrocarbon vapor recovery unit in fluid communication with the ionic liquid reactor for recycling condensed hydrocarbons to the ionic liquid reactor. Processes for ionic liquid catalyzed alkylation are also disclosed.
Abstract:
The present invention includes a reactor main body (4) that is formed into a tubular shape having an axis (O) as the center and accumulates a slurry (S); a gas supply line (10) for incorporating a synthesis gas (G) into the reactor main body (4), and a sparger part (5) that is disposed in a lower portion within the reactor main body (4), communicates with the gas supply line (10), and sprays the synthesis gas (G). The sparger part (5) includes a header tube (15) in which a plurality of openings are formed so as to be separated from each other in a first direction and which sprays the synthesis gas (G) from the openings, and a pair of wall surface parts that protrude from the header tube (15), on opposing sides of the plurality of openings and in a direction orthogonal to the first direction.
Abstract:
A method and system for controlling an interface emulsion layer within an oil treatment vessel includes injecting a water flow through a plurality of radial eductors arranged about a radial eductor manifold located in the brine water layer. Each radial eductor is oriented vertically to the radial eductor manifold and the horizontal axis of the oil treatment vessel. The water flow through the plurality of radial eductors causes a swirling flow pattern in a volume of water around each radial eductor that is effective for promoting a collapse of the interface emulsion layer. The water flow through each radial eductor, which may be a recycled water flow, is preferably in a range of 1 to 5 feet per minute.
Abstract:
According to an embodiment of the present invention, a gas-liquid circulating type gas hydrate reactor, includes: a reactor body configured to be supplied with gas and water to generate a gas hydrate; and a bubble generator configured to be disposed around a lower portion of the reactor body, wherein the gas supplied from the lower portion of the reactor body is jetted into the reactor body through the bubble generator. The gas-liquid circulating type gas hydrate reactor in accordance with the present invention makes it possible to jet gas at a high speed by using the bubble generator disposed at the low portion of the reactor body so as to promote the reaction of water and gas which are accommodated in the reactor body while forming a water stream at the lower portion of the reactor body that enables a smooth agitation of the water and the gas.