Abstract:
A method of producing a device having a minute structure such as a semiconductor element. The producing method comprises the following steps: (a) forming a film of liquid containing a sublimable material on a surface of a product of the device, the sublimable material being solid ordinary temperature and at normal pressure, the minute structure being formed at the surface of the product; (b) improving a wettability of at least one of the minute structure and a region surrounding the minute structure by the liquid film of the sublimable material; (c) converting the liquid film into a state containing the sublimable material in solid phase so as to form a protective film; and (d) vaporizing the protective film to be removed.
Abstract:
A micromechanical electric shunt is fabricated by micromachining according to recent IC fabrication procedures. A plurality of such shunts is incorporated on a single substrate to form novel process station or post identification or signature encoding apparatus for use on a telecommunications bus or the equivalent. Such identification of signature encoding apparatus may be configured for conventional binary coding. Both frequency and current derivative mode apparatus are disclosed.
Abstract:
Various embodiments of the present disclosure are directed towards a microelectromechanical systems (MEMS) device in which a slit at a movable mass of the MEMS device has a top notch slit profile. The MEMS device may, for example, be a speaker, an actuator, or the like. The slit extends through the movable mass, from top to bottom, and has a width that is uniform, or substantially uniform, from the bottom of the movable mass to proximate the top of movable mass. Further, in accordance with the top notch slit profile, top corner portions of the MEMS substrate in the slit are notched, such that a width of the slit bulges at the top of the movable mass. The top notch slit profile may, for example, increase the process window for removing an adhesive from the slit while forming the MEMS device.
Abstract:
A method of strain gauge fabrication is presented herein. The method includes: providing a first substrate having a cavity side; providing a second substrate having a semiconductor side; positioning the second substrate in relation to the first substrate such that the semiconductor side and the cavity side are contactable; processing the second substrate such that the first and second substrates are substantially joined via the semiconductor side and the cavity side; and etching the second substrate to define a strain gauge cantilevered over the cavity side of the first substrate.
Abstract:
Method for encapsulating a microelectronic device, comprising the following steps: producing a sacrificial portion covering the device; producing a cover covering the sacrificial portion, comprising two superimposed layers of separate materials and having different residual stresses and/or coefficients of thermal expansion; etching, through the cover, of a trench of which the pattern comprises a curve and/or two straight non-parallel segments; etching of the sacrificial portion through the trench; depositing a sealing material on the trench; in which, during the etching of the sacrificial portion, a portion of the cover defined by the trench deforms under the effect of a mechanical stress generated by the residual stresses and/or a thermal expansion of the layers of the cover and increases the dimensions of the trench, this stress being eliminated before the sealing of the trench.
Abstract:
Magnet placement is described for integrated circuit packages. In one example, a terminal is applied to a magnet. The magnet is then placed on a top layer of a substrate with solder between the terminal and the top layer, and the solder is reflowed to attach the magnet to the substrate.
Abstract:
Method for encapsulating a microelectronic device, comprising the following steps: producing a sacrificial portion covering the device; producing a cover covering the sacrificial portion, comprising two superimposed layers of separate materials and having different residual stresses and/or coefficients of thermal expansion; etching, through the cover, of a trench of which the pattern comprises a curve and/or two straight non-parallel segments; etching of the sacrificial portion through the trench; depositing a sealing material on the trench; in which, during the etching of the sacrificial portion, a portion of the cover defined by the trench deforms under the effect of a mechanical stress generated by the residual stresses and/or a thermal expansion of the layers of the cover and increases the dimensions of the trench, this stress being eliminated before the sealing of the trench.
Abstract:
A structure and a fabrication method thereof are provided. The method includes the following operations. A device substrate having a first surface and a second surface opposite to each other is received. A carrier substrate having a third surface and a fourth surface opposite to each other is received. An intermediate layer is formed between the third surface of the carrier substrate and the second surface of the device substrate. The second surface of the device substrate is attached to the third surface of the carrier substrate. The device substrate is thinned from the first surface. A device is formed over the first surface of the device substrate. The carrier substrate and the device substrate are patterned from the fourth surface to form a cavity in the carrier substrate, the intermediate layer and the device substrate.
Abstract:
The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
Abstract:
Semiconductor devices and methods are provided for integrally forming electromechanical devices (e.g. MEMS or NEMS devices) with CMOS devices in a FEOL (front-end-of-line) structure as part of a replacement metal gate process flow. For example, a method includes forming an electromechanical device in a first device region of a substrate and forming a transistor device in a second device region of the substrate. The electromechanical device includes a sacrificial anchor structure and a sacrificial cantilever structure formed of a sacrificial material. The transistor device includes a sacrificial gate electrode structure formed of the sacrificial material. A replacement metal gate process is performed to replace the sacrificial gate electrode structure of the transistor device with a metallic gate electrode, and to replace the sacrificial anchor structure and the sacrificial cantilever structure with a metallic anchor structure and a metallic cantilever structure. A release process is performed to release the metallic cantilever structure.