Abstract:
Ballast water treatment apparatus and methods for preventing foreign aquatic invasive species form entering marine ecological zones by translocation in ship's ballast water. The apparatus includes a housing, a filter member, and UV water treatment chambers. Methods include use of a ship's fire hydrant system or ballast water discharge port for moving ballast water from the ship's ballast tanks into the apparatus for filtration and treatment. In-port service vessels and barges as well as dock-side service vehicles are equipped with the various treatment and filtration apparatus to provided in-port or dock-side ballast water treatment services. Related methods are also provided.
Abstract:
The invention relates to a method for the monitoring of a plurality of at least three electrical lighting bodies of the same design, comprising a. Imposition on the plurality of lighting bodies of at least one supply signal from at least one ballast device, b. Reading out of at least one parameter for each of the individual lighting bodies in each case, c. Forming of at least one reference value from at least some of the parameters read out from the different lighting bodies, d. Comparison of the reference value with the parameter of each individual one of the lighting bodies, e. Generation of a signal for each lighting body of which the parameter exceeds a specified deviation from the reference value.
Abstract:
The present invention relates to a method for disinfecting and purifying liquids and gasses comprising; a) passing said liquids or gasses through a reactor or a combination of reactors, having a truncated compounded concentrator geometry; and b) simultaneously delivering and concentrating diversified electromagnetic and acoustic energies into a specific predetermined inner space of said compounded concentrator reactor, forming a high energy density zone in said reactor or reactors over a predetermined period of time. The reactor according to the present invention is preferably a compounded parabolic concentrator or a compounded ellipsoidal concentrator. The electromagnetic energy delivered and concentrated into and inside the reactor can be of any range of the electromagnetic spectrum, such as ultra-violet, visible, infra-red, microwave etc., or combination thereof. The acoustic energy is of any suitable frequency. The radiation source delivering the electromagnetic radiation can be enclosed within the reactor or can be external to the reactor.
Abstract:
There is described a fluid treatment system particularly suited for radiation treatment of a flow of fluid (preferably water). The system comprises a fluid treatment zone for receiving a flow of fluid in contact with a surface of the fluid treatment zone. At least one elongate radiation source assembly is disposed in the fluid treatment zone. The elongate radiation source assembly has a longitudinal axis disposed transverse to a direction of fluid flow through the fluid treatment zone. The system further comprises a cleaning apparatus having at least one cleaning element in contact with an exterior surface of the at least one elongate radiation source assembly. A first motive element is provided and is operable to cause relative movement between a distal end of the at least one elongate radiation source assembly and the surface of the fluid treatment zone to define a gap therebetween. A second motive element is provided and is coupled to the cleaning system. The second motive element operable to move the cleaning system between a cleaning apparatus retracted position and a cleaning apparatus extended position. Movement of the cleaning system from the cleaning apparatus retracted position to the extended position causes debris contacting the at least one elongate radiation source assembly to be pushed into the gap. A radiation source module more use in such a fluid treatment system is also described.
Abstract:
A method of treating water in order to minimize scaling and biomass buildup in water conduits or containers in which the treated water is used includes processing ambient air in a chamber including at least one ultraviolet light source to generate an output flow mixture of air and reactive oxygen species (ROS) gasses, controlling the at least one ultraviolet light source, a flow rate of the output flow mixture and an ROS gas ratio in the output flow mixture, mixing a water flow with the output flow mixture to realize a flow of water/ROS gas mixture and outputting the flow of water/ROS gas mixture as the treated water. Preferably, the processing includes generating reactive oxygen species (ROS) gasses in the output flow mixture including at least one of Super Oxide (O2−) Peroxide (—O2—), Hydroperoxide (HO2−), Hydroxyl Radicals (OH.), Ozone (O3−) and Molecular Oxygen (O2).
Abstract:
An oxygen containing gas is injected at a pressure in the range of about two (2) to about five (5) atmospheres or more into an ultraviolet transmissive sleeve surrounding an ultraviolet lamp to produce a high concentration of ozone. Simultaneously, the ultraviolet lamp irradiates water to be purified disposed in a container surrounding the sleeve. The ozone enriched gas is entrained into the water flowing into the container resulting in an oxidative reaction with any organic matter present and coming into contact with the ozone. Alternatively, the ozone may be entrained in water in a second container downstream of the container wherein the water has been irradiated with ultraviolet radiation. In a further variant, the ozone may be entrained in water in a container upstream of the container wherein the water has been irradiated with ultraviolet radiation. In a yet further variant, the ozone may be entrained in one or more containers upstream and prior to irradiation of the water with ultraviolet radiation in the downstream most container. The ozone may be extracted from the ozonated water prior to discharge if the oxidative effect of the ozone is not desired for the intended end use. To enhance ozone production a predetermined pressure is maintained within the sleeve. To prevent damage to sleeve in the event of a drop in pressure of the water surrounding the sleeve, a further differential pressure regulator may be used to relieve the pressure within the sleeve by discharging ozonated gas from within the sleeve. By use of specifically configured end caps for the sleeve, certain existing water purification systems may be converted to embody the present invention.
Abstract:
Bacteria in water 9 exposed outdoors are effectively killed with ultraviolet (UV) light by suppressing post-treatment increase in the bacteria population due to photoreactivation. The apparatus shines UV light on the water 9 to kill bacteria and has UV light emitting diodes (LEDs) 1 that emit UVA light with a primary emission peak of 320 nm-400 nm. The antibacterial action of the UVA light emitted by the UV LEDs 1 prevents proliferation of bacteria in the disinfected water 9 due to photoreactivation.
Abstract:
The present invention provides a combined labyrinthine fluid sterilizing apparatus, comprising a chamber having an inlet and an outlet as well as a blower/fan provided in the chamber. Ultraviolet lamps are mounted in the lumen of the chamber. The lumen of the chamber is divided by a plurality of bafflers having pores. The pores in the adjacent bafflers are arranged to stagger up and down or from side to side. A mesh plate is provided at the pore. The top and bottom plates of the chamber can be flipped open. The baffler is inserted in the slots in the inner side of the front and back plates. The top and bottom plates have the pore and a cover plate which are both covered by a shield. At least one of the bafflers has a pore, and is provided with a one-way openable valve. The blower is mounted at the pore of the baffler. The chamber and the bafflers are coated with a layer of titanium dioxide. According to the present invention, it is possible to add, remove, or replace the baffler, the filter mesh, the blower or the purifying accessories and the like. The one-way openable valve can prevent the polluted water or air from flowing backwards. Further the to and fro winding disinfecting and sterilizing path prolongs the disinfecting and sterilizing process and increases the duration. With the photocatalytic effect of titanium dioxide, the organic substances are effectively decomposed, the dirt is eliminated, and deodorization and sterilization achieved. As a result, an ideal effect of disinfection and sterilization is achieved.
Abstract:
A water container having a germicidal water purification unit. Water stored in a reservoir passes through a conduit that extends through an array of light sources that operate in at least one of the visible light frequency range and the ultraviolet frequency range to purify the water. The light sources are activated, preferably on a selected as needed basis, by a power supply.
Abstract:
Disclosed herein is a ballast water treatment device. The device includes a filtering unit filtering ballast water introduced into a ship using a filter, a vortex generating unit generating an artificial vortex in the ballast water filtered by the filtering unit, and an ultraviolet treatment unit having an ultraviolet lamp which sterilizes the ballast water discharged from the vortex generating unit using ultraviolet rays, thus preventing secondary contamination resulting from by-products, preventing a ballast tank from becoming contaminated, affording effective maintenance, and making it convenient to control. Further, an artificial vortex is formed in the ballast water when it is mixed, thus allowing a large quantity of ultraviolet rays to be radiated onto the ballast water passing through the ultraviolet treatment unit, therefore improving a sterilization effect.