Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
Abstract:
Provided are a high-efficiency parallel-beam laser optical fiber drawing method and optical fiber, the method including the steps of: S1: providing base planes on the side surfaces of both a gain optical fiber preform and a pump optical fiber preform, inwardly processing the base plane of the gain optical fiber preform to make a plurality of ribs protrude, and inwardly providing a plurality of grooves on the base plane of the pump optical fiber preform; S2: embedding the ribs into the grooves, tapering and fixing one end of the combination of the ribs and the grooves to form a parallel-beam laser optical fiber preform; S3: drawing the parallel-beam laser optical fiber preform into parallel-beam laser optical fibers. The process has high repeatability, and the obtained parallel-beam laser achieves peelability of pump optical fibers in a set area, thus facilitating multi-point pump light injection of parallel-beam laser optical fibers.
Abstract:
An amplifying optical fiber includes an inner core, an inner cladding, a depressed trench, and an outer cladding (e.g., an outer optical cladding). Typically, the inner core includes a main matrix (e.g., silica-based) doped with at least one rare earth element. The depressed trench typically has a volume integral V13 of between about −2200×10−3 μm2 and −1600×10−3 μm2. Exemplary embodiments of the amplifying optical fiber are suitable for use in a compact configuration and high power applications.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
[PROBLEM] There is provided a broadband infrared light emitting device that radiates infrared light having a band broader than a conventional broadband infrared light emitting device.[MEANS FOR SOLVING] The broadband infrared light emitting device at least includes: a light source 4 that emits first excitation light λ1 in a first wavelength range; a first glass phosphor 51 that has an excitation band in a first wavelength range, and when the first excitation light λ1 is incident thereon, emits second excitation light λ2 in a second wavelength range and first infrared light λ3 in a third wavelength range; and a second glass phosphor 52 that has an excitation band in the second wavelength range and does not have an excitation band in the third wavelength range, and when the second excitation light λ2 is incident thereon, allows the first infrared light λ3 to pass therethrough and emits second infrared light λ4 in a fourth wavelength range, and the broadband infrared light emitting device radiates broadband infrared light including at least a part of the third wavelength range and at least a part of the fourth wavelength range to an outside of the broadband infrared light.
Abstract:
A single-mode optical fiber for guiding an optical signal, wherein the core region is capable of guiding an optical signal in a fundamental core mode at an optical signal wavelength. A cladding region is arranged to surround the core region and includes an inner cladding region and an outer cladding region. The inner cladding region includes a background material and a plurality of inner cladding features arranged in the background material, wherein a plurality of the plurality of inner cladding features are of a first type of feature that includes an air hole surrounded by a high-index region comprising a high-index material that is larger than the refractive index of the inner cladding background material.
Abstract:
A method of producing a conversion element includes forming a preform from a glass, reshaping the preform into a structured glass fiber using a structuring element, and dividing the glass fiber into conversion elements.
Abstract:
An optical waveguide including a core, a buffer surrounding the core, and a cladding surrounding the buffer. The core, the buffer and the cladding include silica glass. A refractive index of the buffer is substantially equal to a refractive index of pure amorphous silica glass. The buffer may reduce bubble formation during manufacturing and may facilitate splicing of the waveguide. A numerical aperture of the waveguide may be fine-tuned by adjusting a radial dimension of the buffer in order to compensate variations in the refractive index of the core.
Abstract:
The invention relates to a method allowing cost-effective production of doped quartz glass, particularly laser-active quartz glass, that is improved with regard to the homogeneity of the doping material distribution, in that a suspension is provided comprising SiO2 particles and an initial compound for at least one doping material in an aqueous fluid, the fluid being removed under formation of a doped intermediate product comprising particles of the doping material or particles of the precursor substance or the doping material, and the doped quartz glass is formed by sintering the doped intermediate product, wherein at least part of the particles of the doping material or the particles of the precursor substance of the same is generated in the suspension as a precipitate of a pH-value-controlled precipitation reaction of the initial compound.