Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The present invention relates to fluorescent glass which is easily put into practical use, and optical elements including the same. In one aspect, the fluorescent glass is comprised of silica-based glass containing Bi as a dopant, and adapted to generate fluorescence in response to pumping light in a wavelength band of 980 nm incident thereon. In another aspect, the fluorescent glass contains at least one species of transition metal as a dopant, and exhibits a 980-nm band absorption spectrum having a full width at half maximum exceeding 10 nm. In still another aspect, the fluorescent glass is comprised of silica-based glass containing at least one species of transition element as a dopant, and exhibits a fluorescence spectrum with a peak intensity fluctuating within a range of −1 dB or more but 1 dB or less with respect to pumping light having a fixed intensity in a state set to a temperature of −5° C. or more but 65° C. or less.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
The present invention relates to fluorescent glass which is easily put into practical use, and optical elements including the same. In one aspect, the fluorescent glass is comprised of silica-based glass containing Bi as a dopant, and adapted to generate fluorescence in response to pumping light in a wavelength band of 980 nm incident thereon. In another aspect, the fluorescent glass contains at least one species of transition metal as a dopant, and exhibits a 980-nm band absorption spectrum having a full width at half maximum exceeding 10 nm. In still another aspect, the fluorescent glass is comprised of silica-based glass containing at least one species of transition element as a dopant, and exhibits a fluorescence spectrum with a peak intensity fluctuating within a range of −1 dB or more but 1 dB or less with respect to pumping light having a fixed intensity in a state set to a temperature of −5° C. or more but 65° C. or less.
Abstract:
The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
Abstract:
The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
Abstract:
The present invention is directed at a family of glasses capable of absorbing UV radiation and filtering yellow light in the visible region of the spectrum, the family of glasses having a composition consisting essentially, in terms of weight percent on the oxide basis, of: 55-95.7% SiO2, 0-28% B2O3, 0.5-18% Al2O3, 0-4% SrO, 0-13% BaO, 0-13% CaO, 0-8% MgO, 0-7.5% Na2O, 0-9.5% K2O, 0-1.5% Li2O, 0-1.5% Sb2O3, 0.4-4.5% Nd2O3, and 0.1-1% CeO2. Glasses of the present invention are capable of employment as envelopes for tungsten-halogen lamps and other high temperature light sources, as well as sealed-beam incandescent headlights.
Abstract translation:本发明涉及能够吸收紫外辐射并过滤光谱可见光区域中的黄光的玻璃系列,具有以氧化物为基准的基本上以重量百分数计的组成的玻璃系列为:55 -95.7%SiO 2,0-28%B 2 O 3,0.5-18%Al 2 O 3,0-4%SrO,0-13%BaO,0-13%CaO,0-8%MgO,0-7.5%Na 2 O,0-9.5 %K2O,0-1.5%Li2O,0-1.5%Sb2O3,0.4-4.5%Nd2O3和0.1-1%CeO2。 本发明的玻璃能够用作钨卤素灯和其他高温光源以及密封束白炽灯的信封。
Abstract:
The present invention comprises a process for separating rare earth ions or actinide ions or mixtures thereof in solution by passing the solution through an ion exchange material to separate the rare earths or actinides or mixtures thereof. The ion exchange material has a surface area of about 5-1500 m.sup.2 /g. The ion exchange material is impregnated with a liquid containing alkali metal cations, Group Ib metal cations, ammonium cations, organic amines or mixtures thereof, at a pH range above about 9. A plurality of fractions of the solution is collected as the solution passes through the ion exchange material, preferably in a column. This process is particularly preferred for separating rare earth ions and especially lanthanum and neodymium. It is particularly preferred to purify lanthanum to contain less than 0.1 ppm, preferably less than 0.01 ppm, of neodymium. In another embodiment, the present invention comprises a method of producing a porous silicate glass containing at least one transition metal oxide additive selected from a group consisting of the bottom two rows of Group VIII of the Periodic Table. This method comprises preparing a base glass from a melt which contains 40-80 mol percent of silica and up to 10 mol percent of one or more transition metal oxide additives selected from said group or of precursors of said oxide additives, separating said base glass by heat treatment into at least a soluble phase and an insoluble phase, leaching out the soluble phase. In yet another embodiment, the present invention comprises an ion exchange material consisting of a porous glass or silica gel including at least about 0.2 mol percent of a transition metal oxide or hydrous metal oxide and containing at least 0.3 mol percent of alkali metal cation, Group Ib metal cation, ammonium, organic amines, or mixtures thereof.
Abstract:
A liquid containing radioactive ions is purified (decontaminated) by contacting the same with an inorganic ion exchange composition having ion exchange sites which can be occupied by the radioactive ions from the liquid. The ion exchange composition is a mixture of an ion exchange medium and an additive which is relatively inert to the ion exchange process and which is a sintering aid for the ion exchange medium designed to lower the sintering temperature of the ion exchange composition. The ion exchange composition may be disposed within a suitable container (e.g., cannister), e.g., made of 304L stainless steel or Inconel 601 and the ion exchange process may be carried out in such container. Alternatively, the ion exchange medium can be employed without being previously admixed with the additive. The additive, if desired, can be admixed at a later stage with the contaminated medium. Thereafter, the mixture may be sintered and disposed of in any desirable manner as by underground burial of the spent mixture within the container. Also, the container may be placed within a suitably designed furnace for carrying out the ion exchange process, sintering of the ion exchange composition and its safe disposal. Methods are also described for making a homogeneous mixture of the ion exchange medium and the additive which, for example, have a certain defined density and particle size relationship.
Abstract:
A glass article is produced by doping a porous glass matrix with at least one member selected from the group consisting of PbO and Bi.sub.2 O.sub.3 and at least one member selected from the group consisting of K.sub.2 O, Rb.sub.2 O and Cs.sub.2 O, and producing a profile in dopant composition by immersion in a multiple-solvent solution.
Abstract translation:通过用选自PbO和Bi 2 O 3的至少一种元素和选自K 2 O,Rb 2 O和C 8 O 2中的至少一种的元素掺杂多孔玻璃基体来制造玻璃制品,并且通过 浸入多溶剂溶液中。