Abstract:
It is an object of the present invention to provide a method and a device for automatically calibrating a light intensity measurement device. The device (1) includes an optical switch (3) for switching a route of output from an optical intensity modulator (2), an optical attenuator (5) arranged on a first waveguide (4), a second waveguide (6), a light intensity measurement device (7), a control device (8) for receiving light intensity information measured by the light intensity measurement device (7) and controlling the signal to be applied to the optical intensity modulator (2), and a signal source (9) for receiving a control signal of the control device (8) and adjusting the signal to be applied to the optical intensity modulator (2).
Abstract:
A method of self-testing includes transmitting a plurality of self-test signals and receiving the plurality of self-test signals. In addition, the method includes storing the received self-test signal in a first database; and comparing the received self-test signal with data from a second database. An self-testing apparatus and a method of for assuring substantially continued calibrated function of a testing device.
Abstract:
A testing device equipped with: a microchip having a receiver for a test fluid, a discharge lamp which emits light into the microchip test fluid receiver, a light source housing in which the discharge lamp is located, and an arithmetic calculation mechanism, which calculates the concentration of the component to be detected, based on the intensity of the light emitted from the test fluid container unit. To reduce the size of the device and to shield the arithmetic calculation mechanism from electromagnetic waves generated around the light source, the light source housing is equipped with shielding connected to the ground on the outside of the light source housing made of insulating material. The light source housing is positioned within an enclosure of the testing device holding the microchip and containing the arithmetic calculation mechanism, analysis output device(s), etc.
Abstract:
An apparatus, a microscope having an apparatus, and a method for calibration of a photosensor chip (19) are disclosed. The apparatus has a photosensor chip (19) which has a multiplicity of light-sensitive elements. A reference light source (30) is provided and directs the light at at least one part of the photosensor chip (19). In addition, an open-loop or closed-loop control unit (19a) is provided and determines and corrects variances between the individual light-sensitive elements.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
A light measurement method is provided comprising: determining one or more correction factors for at least one image capture device, using the image capture device to receive light output from at least one source of illumination, obtaining an output from the image capture device which corresponds to the light output of the source of illumination, and applying the or each correction factor to the output of the image capture device to obtain one or more substantially absolute measure of the light output of the source of illumination. A light measurement apparatus is also provided to carry out the light measurement method.
Abstract:
A light-emitting diode array is driven by a digital control. The digital control modulates the pulse width of pulses applied to the light-emitting diode. The intensity of the output is controlled by controlling the width of pulses applied to the light-emitting diode. Since light-emitting diodes have very low inertial energy, this system can be rapidly turned on and turned off. The output is integrated to produce a uniform output.
Abstract:
A light source of testing a sensor, a test apparatus and a method are disclosed. The test apparatus includes a light source, a photo-mask and a sensor bearing area. The light source includes a plurality of light emitting diodes with parallel connection for emitting a test light. The light source is disposed in a photo-mask. The photo-mask has a diffuser interface. The test light is then diffused to the outside of the photo-mask through the diffuser interface. The sensor bearing area is for bearing the sensor. The sensor bearing area is disposed at the outside of the photo-mask and locates at a position to enable the test light to reach. Therefore, the test light emitted by the light source is used to test the sensor.
Abstract:
An apparatus that includes an output unit having a photoelectric converting element and configured to produce a signal corresponding to light incident on the photoelectric converting element, a restricting unit configured to restrict a light receiving region of the photoelectric converting element to one of a first region and a second region, and a calculating unit configured to calculate a sensitivity of the first region, based on an output signal obtained from the output unit with respect to the first region to which the light receiving unit is restricted by the restricting unit, and on an output signal obtained from the output unit with respect to the second region to which the light receiving region is restricted by the restricting unit.
Abstract:
The present invention provides an optical transmission device, comprising a chamber having a light input into the chamber, and having a first port allowing light to pass out of the chamber, and comprising internal surfaces where at least a portion of the surfaces is diffusely reflecting, and where at least a portion of the one or more surfaces is specularly reflecting, and where the light input and the first port and the one or more surfaces are configured such that substantially all light entering the chamber via the light source within a first predetermined aperture must encounter the diffusely reflecting portion before exiting the chamber via the first port within a second predetermined aperture. The invention can provide substantially homogenous light transmission, both as a source of light for optical systems and as a collector of light from a sample.