Abstract:
An ultraviolet area sterilizer or disinfector is incorporated into a building structure where concern exists regarding the presence of pathogenic bacteria on environmental surfaces. Ultraviolet C (UV-C) generators generate UV-C that is directed to architectural partitions of an enclosed area. The architectural partitions reflect UV-C to kill pathogens in the enclosed area. The device transmits a calculated dose of UV-C from a fixture mounted to an architectural partition in the enclosed area. Once an effective cumulative dose of UV-C has been reflected to radiation sensors, as measured by the sensors, the device shuts down. The device may allocate power to specific UV-C emitters so as to direct UV-C radiation more uniformly throughout the area, as measured by the sensors.
Abstract:
Field balancing may be performed with an irradiation system including a plurality of adjustable radiant-energy emitters. The irradiation system powers the radiant-energy emitters from a power source and radiant energy is emitted from the radiant-energy emitters, where an amount of radiant energy emitted from each emitter is capable of being varied based on power received from the power source. A plurality of radiant-energy sensors detects an amount of radiant energy which includes radiant energy created directly by at least one of the radiant-energy emitters. The amount of radiant energy detected at at least two of the radiant-energy sensors is compared, and at least one of the radiant-energy emitters is adjusted by varying the power received from the power source so that the amount of radiant energy detected at each of the radiant-energy sensors tends towards becoming approximately equal. The emitting of radiant energy from each radiant-energy emitter is terminated when a total amount of radiant energy emitted from the plurality of adjustable radiant-energy emitters exceeds a predetermined threshold value, where the threshold value is sufficient to allow the total amount of radiant energy emitted from the plurality of adjustable radiant-energy emitters to sanitize a particular area in which the emitters are located.
Abstract:
An electronic device capable of detecting ultraviolent radiation and a method thereof are provided. The device includes a camera, a voltage-sensitive optical medium, a control switch, and a processor. When the electronic device enters an ultraviolent radiation detecting mode, the camera captures a first image. The processor controls the control switch to create an electrical potential across the optical medium and cause it to become darker after the camera captures the first image. The camera captures a second image after the control switch has allowed an electrical potential for a first preset time interval. The processor acquires reads the respective brightness of the first image and the second image, determines any difference, and determines and outputs the level of intensity of the ultraviolent radiation intensity by reference to a table of differences.
Abstract:
An ultraviolet area sterilizer or disinfector is incorporated into a building structure where concern exists regarding the presence of pathogenic bacteria on environmental surfaces. Ultraviolet C (UV-C) generators generate UV-C that is directed to architectural partitions of an enclosed area. The architectural partitions reflect UV-C to kill pathogens in the enclosed area. The device transmits a calculated dose of UV-C from a fixture mounted to an architectural partition in the enclosed area. Once an effective cumulative dose of UV-C has been reflected to radiation sensors, as measured by the sensors, the device shuts down. The device may allocate power to specific UV-C emitters so as to direct UV-C radiation more uniformly throughout the area, as measured by the sensors.
Abstract:
A method for measuring radiation of energy photons, such as ultraviolet radiation, on a surface, may include programming at least one transistor by at least transmitting an electric charge to it. The method may further include measuring an electrical quantity of the at least one transistor receiving radiation of energy photons and estimating, based on this electrical quantity, an amount of radiation received.
Abstract:
A hand-held mobile communication device, such as smart telephone, alone or in protective case, incorporating sensors and signal conditioning modules for measuring signals from external sources of electromagnetic radiation (EMR) in different spectral ranges. These include detector monitoring EMR that pose potential health hazards or may interfere with various electronic devices. Other integrated EMR sensor is a photodiode for the ultraviolet detection to monitor the user's sun exposure and a thermal infrared detector for non-contact measurement of temperature of humans or inanimate objects. This detector in combination with a digital camera and a pattern recognition signal processing allows accurate non-contact measuring temperatures at specific location.
Abstract:
The present application discloses devices, systems and methods for establishing and utilizing a UV sensing network to harness the efficacy of distributed UV sensing to produce improved accuracy of UV exposure measurement using mobile devices. This may be accomplished by “crowd sourcing”, i.e. having multiple devices work collaboratively to measure the UV exposure. The collaboration can be implemented in many potential ways, such as, using a server based architecture where devices connect to a specific “UV measurements server” to provide measurements and receive aggregate estimated exposure levels, and/or by using a peer-to-peer architecture, where devices in a specific region creates a local ad-hoc UV sensing network.
Abstract:
A controller for an ultraviolet (UV) purification system having UV lamps includes a sensor in communication with a given UV lamp as well as a processor in communication the sensor. The sensor provides the UV light intensity rate of the UV lamp (sensed rate) and transmits this information to the processor which compares the sensed rate with a memory stored desired UV light intensity rate (desired rate). An indicator in communication with the processor indicates when the UV lamp is producing a UV light intensity below the desired rate. Current is provided to the UV lamp by a ballast. The processor includes a memory stored predetermined UV light intensity rate (predetermined rate) that is greater than the desired rate. When the sensed rate is lesser than the predetermined rate, the current provided by the ballast is increased such that the UV lamp produces a UV light intensity at least equal to the predetermined rate.
Abstract:
An ultraviolet light generating target 20 includes a substrate 21 made of sapphire, quartz, or rock crystal; and a light-emitting layer 22 that is provided on the substrate 21 and that generates ultraviolet light upon receiving an electron beam. The light-emitting layer 22 includes powdered or granular Pr:LuAG crystals. By using such a light-emitting layer 22 as the target, the ultraviolet light generating efficiency can be increased more remarkably than when a Pr:LuAG single crystal film is used.
Abstract:
The present invention for imaging sensor rejuvenation may include a rejuvenation illumination system configured to selectably illuminate a portion of an imaging sensor of an imaging system with illumination suitable for at least partially rejuvenating the imaging sensor degraded by exposure to at least one of extreme ultraviolet light or deep ultraviolet light; and a controller communicatively coupled to the rejuvenation illumination system and configured to direct the rejuvenation illumination system to illuminate the imaging sensor for one or more illumination cycles during a non-imaging state of the imaging sensor.