Abstract:
There is provided an illumination system for microlithography with wavelengths≦193 nm that includes a primary light source, a first optical component, a second optical component, an image plane, and an exit pupil. The first optical component transforms the primary light source into a plurality of secondary light sources that are imaged by the second optical component in the exit pupil. The first optical element and the second optical element are reflective. The first optical component includes a first optical element having a plurality of first raster elements that are imaged into the image plane, producing a plurality of images being superimposed, at least partially, on a field in the image plane. The first optical component includes a collector unit and a second optical element having a plurality of second raster elements. The illumination system also includes a first optical axis between the collector unit and the first optical element, a second optical axis between the first optical element and the second optical element, and a third optical axis between the second optical element and the second optical component. A directional vector of the first optical axis and a directional vector of the second optical axis define a plane and wherein the first and second optical elements are tilted to cause a crossing of the projection of the third optical axis in to the plane and the first optical axis.
Abstract:
A focus/detector system of an X-ray apparatus is disclosed for generating projective or tomographic phase contrast recordings. In at least one embodiment, the system includes a beam source, including a focus and a focus-side source grating, arranged in the beam path to generate a field of ray-wise coherent X-rays; and a grating/detector arrangement having a phase grating with grating lines arranged parallel to the source grating for generating an interference pattern and a detector having a multiplicity of detector elements arranged flat for measuring the radiation intensity behind the phase grating. Further, the detector elements are formed by a multiplicity of elongate detection strips, which are aligned parallel to the grating lines of the phase grating. Furthermore, at least one embodiment also relates to the use of this focus/detector system in an X-ray system for generating projective recordings or in C-arc equipment or a CT system, and/or to a method for generating projective and tomographic X-ray recordings of a subject.
Abstract:
A reticle includes an area provided with a conductive metal-based compound coating for electrically grounding the reticle. The reticle is suitable for use with a lithography apparatus whereby the reticle pattern is imaged using extreme ultra violet radiation. One or more conducting pins, held at zero potential, may be pressed against the conductive coating for electrically grounding the reticle either during patterning the reticle by electron beam writing or during use in the lithographic apparatus. The areas coated with the metal-based compounds are wear resistant which reduces the occurrence of particles due to damage caused by mechanical contact between the conducting pins and the conductive coating.
Abstract:
A collector that includes a laser produced plasma (LPP) extreme ultra violet (EUV) light source and a first optical path from the source to a mirror. The mirror is the first mirror that light emitted from the source and traveling along the first optical path impinges upon. The collector also includes a second optical path from the source to another mirror. The other mirror is the first mirror that light emitted from the source and raveling along the second path impinges upon. The mirror and the other mirror are oriented relative to the source such that light from the source traveling along the first optical path travels in a direction opposite to light traveling from the source along the second optical path. A collector having a discharge extreme ultra violet (EUV) light source.
Abstract:
An x-ray source assembly includes an anode having a spot upon which electrons impinge based on power level supplied to the assembly, and an optic coupled to receive divergent x-rays generated at the spot and transmit output x-rays from the assembly. A control system is provided for maintaining intensity of the output x-rays dynamically during operation of the x-ray source assembly, notwithstanding a change in at least one operating condition of the x-ray source assembly, by changing the power level supplied to the assembly. The control system may include at least one actuator for effecting the change in the power level supplied to the assembly, by, e.g., controlling a power supply associated with the assembly. The control system may also change the temperature and/or the position of the anode to maintain the output intensity.
Abstract:
Systems and methods are disclosed for protecting an EUV light source plasma production chamber optical element surface from debris generated by plasma formation. In one aspect of an embodiment of the present invention, a shield is disclosed which comprises at least one hollow tube positioned between the optical element and a plasma formation site. The tube is oriented to capture debris while allowing light to pass through the tube's lumen via reflection at relatively small angles of grazing incidence. In another aspect of an embodiment of the present invention, a shield is disclosed which is heated to a temperature sufficient to remove one or more species of debris material that has deposited on the shield. In yet another aspect of an embodiment of the present invention, a system is disclosed which a shield is moved from a light source plasma chamber to a cleaning chamber where the shield is cleaned.
Abstract:
Attempting to provide an illumination optical system and an exposure apparatus using the same, which provide a more uniform angular distribution of light for illuminating a mask than the prior art, an illumination optical system for illuminating an object surface includes an optical unit that converts light from a light source section into approximately parallel light, and includes first and second mirrors, wherein the first mirror has an opening, through which light reflected by the second mirror passes.
Abstract:
The metal film of the present invention is a dense film of a single crystal that has very low surface roughness and very good crystal orientation because an arithmetic mean roughness of the surface is not larger than 2 nm and a (111) peak intensity of X-ray diffraction is not less than 20 times the sum of all other peaks. Also the metal oxide film of the present invention is a dense film that includes less oxygen defects and almost no voids therein because a content of a non-oxidized metal is not higher than 1 mole % of a metal component that constitutes the metal oxide and a packing density is 0.98 or higher.
Abstract:
Inventions related to the intra-vision means, designed for production of visually sensed images of the internal structure of an object, in particular, of a biological object, are aimed at higher accuracy of determining the relative density indices of the object's substance in the obtained image together with avoiding complex and expensive engineering; when used for diagnostic purposes in medicine, the dosage of tissues surrounding those that are examined is decreased. X-rays from source 1 is concentrated (for example, using X-ray lens 2) in the zone that includes the current point 4, to which the measurement results are attributed and which is located within the target area 7 of the object 5. Excited in this zone secondary scattered radiation (Compton, fluorescent) is transported (for example, using X-ray lens 3) to one or more detectors 6. By moving the said zone, the target area 7 of object 5 is scanned, and based upon population of the intensity values of the secondary radiation, which are obtained with the help of one or more detectors 6 and which are determined concurrently with coordinates of the current point 6, judgment on the density of the object's substance in this point is made. Density values together with respective coordinate values obtained using sensors 11 are used in the means 12 for data processing and imaging to build up a picture of substance density distribution in the target area of the object.
Abstract:
The metal film of the present invention is a dense film of a single crystal that has very low surface roughness and very good crystal orientation because an arithmetic mean roughness of the surface is not larger than 2 nm and a (111) peak intensity of X-ray diffraction is not less than 20 times the sum of all other peaks. Also the metal oxide film of the present invention is a dense film that includes less oxygen defects and almost no voids therein because a content of a non-oxidized metal is not higher than 1 mole % of a metal component that constitutes the metal oxide and a packing density is 0.98 or higher.