Abstract:
In a film-forming treatment jig for forming a thin film on a plate having a through hole of a micro diameter by a single plasma film-forming treatment, the film-forming treatment jig includes: a holding member 39 for holding the aperture plate in a state of exposing the through hole and the front and back surfaces of the aperture plate by clamping an aperture plate 107 having a through hole; and an electrode member having the holding member attached thereon, wherein the electrode member is electrically connected to an electrode to which the plasma electric power of a plasma CVD apparatus is applied.
Abstract:
A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behind the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. In certain embodiments, the movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone. In certain embodiments, magnet power and/or speed varies as function of direction of magnet travel.
Abstract:
An in-line sputtering system includes a chamber and a sputtering target near a top region of the chamber. The system also includes a moving device located on a bottom region of the chamber configured to move a plurality of planar substrates loaded horizontally in a row with at least a gap distance between any neighboring substrates, The gap distance allows the bottom region to be subjected to a deposition from the sputtering target as the gap distance moves across the entire bottom region along with the plurality of planar substrates by the moving device, The system further includes a bottom shield disposed to cover entire bottom region except the moving device and configured to adhere the deposition through the gap distance from the sputtering target for preventing a deposition buildup.
Abstract:
A method and apparatus for supplying a gas mixture to a load lock chamber is described. In one embodiment, the apparatus supplies a gas mixture to a pair of process chambers, comprising a first ozone generator to provide a first gas mixture to a first process chamber, a second ozone generator to provide a second gas mixture to a second process chamber, a first gas source coupled to the first ozone generator via a first mass flow controller and a first gas line, and coupled to the second ozone generator via a second mass flow controller and a second gas line, and a second gas source coupled to the first ozone generator via a third mass flow controller and a third gas line and coupled to the second ozone generator via fourth mass flow controller and a fourth gas line.
Abstract:
Substrate processing systems and methods for etching an atomic layer are disclosed. The methods and systems are configured to introducing a first gas into the chamber, the gas being an etchant gas suitable for etching the layer and allowing the first gas to be present in the chamber for a period of time sufficient to cause adsorption of at least some of the first gas into the layer. The first gas is substantially replaced in the chamber with an inert gas, and metastables are then generated from the inert gas to etch the layer with the metastables while substantially preventing the plasma charged species from etching the layer.
Abstract:
A deposition apparatus according to an exemplary embodiment of the present invention includes a plurality of reactors; a plurality of gas supply units connected to the plurality of reactors; and a plurality of plasma supply units connected to the plurality of reactors. Each of the plasma supply units includes: a plasma power supplier; a plurality of diodes connected to the plasma power supplier; and a reverse voltage driver connected to the plurality of diodes through respectively corresponding switches.
Abstract:
A plasma processing device according to the present invention includes a plasma processing chamber, a plasma producing chamber communicating with the plasma processing chamber, a radio-frequency antenna for producing plasma, a plasma control plate for controlling the energy of electrons in the plasma, as well as an operation rod and a moving mechanism for regulating the position of the plasma control plate. In this plasma processing device, the energy distribution of the electrons of the plasma produced in the plasma producing chamber can be controlled by regulating the distance between the radio-frequency antenna 16 and the plasma control plate by simply moving the operation rod in its longitudinal direction by the moving mechanism. Therefore, a plasma process suitable for the kind of gas molecules to be dissociated and/or their dissociation energy can be easily performed.
Abstract:
A tandem processing-zones chamber having plasma isolation and frequency isolation is provided. At least two RF frequencies are fed from the cathode for each processing zones, where one frequency is about ten times higher than the other, so as to provide decoupled reactive ion etch capability. The chamber body is ground all around and in-between the two processing zones. The use of frequency isolation enables feed of multiple RF frequencies from the cathode, without having crosstalk and beat. A plasma confinement ring is also used to prevent plasma crosstalk. A grounded common evacuation path is connected to a single vacuum pump.
Abstract:
Apparatus and methods to minimize wafer-to-wafer process variation in RF-based semiconductor processing reactors with shared RF source for multiple processing areas. RF sensors associated with each processing area sends signal to the RF balance controller. The controller modifies station impedance using power adjustment mechanisms. As a result, station to station distribution of a selected RF parameter (e.g., load power) may match the station set points. Closed loop control maintains balance despite changing conditions.
Abstract:
In order to control a temperature of a wafer with high accuracy, there is provided a temperature controlling method including retrieving a result of measuring a kind of a film formed on a rear surface of the wafer; selecting a temperature of the wafer corresponding to an electric power supplied to process the wafer and the kind of the film formed on the rear surface of the wafer, which is the measurement result, from a first database, in which the electric power supplied to a chamber, the kind of the film formed on the rear surface of the wafer, and the temperature of the wafer are stored to be linked to one another; and adjusting the temperature of the wafer based on the selected temperature of the wafer.