Abstract:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
Abstract:
An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.
Abstract:
An isotropically electroconductive resin film material produced by sticking electroconductive particles to a sticking layer formed on a support and fixing therein, and filling a film-forming resin incompatible with the sticking material among the electroconductive particles, has electroconductivity only in the film thickness direction via the electroconductive particles uniformly dispersed in the plane direction, and is suitable for electrically connecting oppositely placed circuits and fine electrodes of a plurality of electronic parts, and for testing electronic parts.
Abstract:
In an anisotropic conductive film, ultraresilient alloy particles, playing the role of conductive particles, are dispersed in a resin. With this configuration, the ACF reduces line defects to occur on a liquid crystal display panel and attributable thereto to one-tenth.
Abstract:
A composition comprising (A) an epoxy resin type adhesive, (B) particles obtained by coating a nucleus of a curing agent with a film, (C) pressure-deformable electroconductive particles having an average particle size larger than that of the particles (B), and if necessary (D) rigid particles having an average particle size smaller than that of the particles (B). Also, a method of using for the composition connecting circuits electrically or connecting a semiconductor chip to a wiring substrate.
Abstract:
A conductive connecting structure for electrically connecting first and second electronic parts each having a plurality of connecting terminals arranged at a small pitch is disclosed. A conductive bonding agent is interposed between the plurality of connecting terminals of the first and second electronic parts. The conductive bonding agent is prepared by mixing a plurality of fine connecting particles in an insulating adhesive. Each fine connecting particle is designed such that a fine conductive particle or a fine insulating particle with a plating layer formed on its surface is covered with an insulating layer consisting of a material which is broken upon thermocompression bonding. When the conductive bonding agent is subjected to thermocompression bonding between the connecting terminals of the first and second electronic parts, portions of the fine connecting particles which are urged by the respective fine connecting terminals are broken. However, the insulating layers of the fine connecting particles in the planar direction are not broken and remain as they are. In this conductive connecting structure, even if the ratio of fine connecting particles is increased, and adjacent fine connecting particles are brought into contact with each other, insulating properties can be kept in the planar direction, while conduction is obtained only in the direction of thickness.
Abstract:
Excellent connection of conductors with high reliability can be accomplished by using an adhesive composition or flim capable of exhibiting anisotropic-electroconductivity comprising electroconductive particles comprising polymeric core materials coated with thin metal layers, and electrically insulating adhesive component.
Abstract:
A biphasic composition comprises a quantity of liquid GaIn and a plurality of solid particles of Ga2O3 suspended in the quantity of liquid GaIn, the Ga2O3 particles having a median particle size between 8 μm and 25 μm, wherein the volumetric ratio of solid particles of Ga2O3 to liquid GaIn is between 0.4 and 0.7. A method of making a biphasic composition of GaIn, a method of making a stretchable circuit board assembly, and a stretchable circuit board assembly are also described.
Abstract:
Ensure conduction between an electronic component and a circuit substrate having reduced pitches in wiring of the circuit substrate or electrodes of the electronic component and prevent short circuits between electrode terminals of the electronic component. A connection body including an electronic component connected to a circuit substrate via an anisotropic conductive adhesive agent containing conductive particles; wherein the conductive particles are regularly arranged; and wherein the conductive particles have a particle diameter that is ½ or less than a height of a connecting electrode of the electronic component.
Abstract:
Disclosed is a component-mounted structure including a first object having a plurality of first electrodes, a second object as an electronic component having second electrodes, a joint portion joining the plurality of first electrodes and the corresponding second electrodes to each other, and a resin-reinforcing portion. The joint portion has a core including at least one of a first metal and a resin particle, and a layer of an intermetallic compound of the first metal and a second metal having a low melting point. The resin-reinforcing portion includes a particulate matter including the core and the intermetallic compound, in a portion except between the first and second electrodes. An amount of the particulate matter included in the portion is 0.1 to 10 vol %.