Abstract:
An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
Abstract:
The invention relates to an electric multilayer printed circuit board which satisfies the PICMG specification EXP.O, comprising a first signal layer and a second signal layer. The first signal layer comprises at least one first conductive path (33) and a first shielding region. The second signal layer comprises at least one second conductive path (43) and a second shielding region. The at least one first conductive path (33) and the at least one second conductive path (34) can be arranged such that the paths cross in at least one crossing point K. The first conductive path (33) is arranged adjacently to the second shielding region at each point where the first conductive path does not cross a second conductive path (43), and each second conductive path (43) is arranged adjacently to the first shielding region at each point where the second conductive path does not cross a conductive path (33).
Abstract:
To provide a shield film which is capable of suitably shielding electric field waves, magnetic field waves, and electromagnetic waves progressing from one side to the other side of the shield film and has good transmission characteristics, a shielded printed wiring board, and a method for manufacturing the shield film, a metal layer 3 which is 0.5 μm to 12 μm thick and an anisotropic conductive adhesive layer 4 which is anisotropic so as to be electrically conductive only in thickness directions are provided in a deposited manner, so that electric field waves, magnetic field waves, and electromagnetic waves progressing from one side to the other side of the shield film are suitably shielded.
Abstract:
In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a conductive vertical interconnect access structure (vias) associated with each component area to be shielded is then exposed through the body by a cutting, drilling, or similar operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed conductive vias.
Abstract:
A method of manufacturing a flexible printed circuit board including determining an elastic modulus of a conductive portion and an elastic modulus of first and second dielectric portions, determining a thickness of the conductive portion and the first and second dielectric portions so that a neutral plane is located within a predetermined range of the thickness of the conductive portion, the neutral plane being substantially free from tension or compression in response to bending of the flexible printed circuit board, and insulating the conductive portion according to the determined thickness and the determined elastic modulus.
Abstract:
A signal transmission cable comprises a cable including a dielectric layer and a metallic layer; and a connector having a chip with a terminal. The connector includes a substrate having an organic layer, and a portion of the organic layer extends from the substrate so as to form the dielectric layer of the cable. The metallic layer is located on the dielectric layer and is directly connected to the terminal.
Abstract:
A semiconductor device includes: a board; a power wire formed on the board; a signal wire formed on the board; a ground wire formed on the board; an insulating layer covering the signal wire, the power wire and the ground wire; and a metal film formed on the insulating layer, wherein a thickness of the insulating layer covering the power wire is different from a thickness of the insulating layer covering the signal wire, and the metal film is connected to a ground potential.
Abstract:
An X-ray obscuration (XRO) film comprising one or more metallic wire mesh layers and an adjacent layer of indium foil having portions which extend into openings of the wire mesh and in contact with metallic portions thereof. The XRO film can be capable of absorbing at least a portion of X-ray energy thereby creating an interference pattern when the XRO film is coupled with an electronic circuit and placed between an X-ray source and an X-ray detector and subjected to radiographic inspection. The interference pattern can create sufficient visual static to effectively obscure circuit lines in the electronic circuit when subjected to radiographic inspection techniques. The XRO film can be substantially thinner than existing solutions for preventing X-ray inspection with an exemplary embodiment being no more than 5 mils thick. The metallic XRO film can also provide electromagnetic shielding and/or heat dissipation for electronic circuits.
Abstract:
A multi-layer printed circuit board includes a first layer stack and a second layer stack coupled to the first layer stack. The first layer stack includes a first electrically-insulating layer, a second electrically-insulating layer, and a first electrically-conductive layer disposed between the first and second electrically-insulating layers. The second layer includes a third electrically-insulating layer and a second electrically-conductive layer. The first layer stack and/or the second layer stack include a cut-out area defining a void that extends therethrough. The multi-layer printed circuit board further includes a first signal layer disposed in association with the first electrically-insulating layer of the first layer stack or the third electrically-insulating layer of the second layer stack, a second signal layer disposed in association with the second electrically-insulating layer of the first layer stack, and a device at least partially disposed within the cut-out area and electrically-coupled to the first and second signal layers.
Abstract:
An equalizer for compensating transmission losses of electronic communication signals includes a circuit board and a compensation module. The compensation module includes a pair of input pins, a pair of output pins, first and second resistors, first and second vias, and a pair of micro-strips. When a signal transmitted by the circuit board is received by the input pins, a first part of the signal is directly outputted from the output pins, a second part of the signal is reflected by the first resistor and transmitted back to the output pins to be outputted, and a third part of the signal is reflected by the second resistor and transmitted back to the output pins to be outputted, such that the output of the equalizer applies two stages of compensation.