Abstract:
Gemini surfactants of bis-N-alkyl polyether, bis-N-alkenyl polyether, bis-N-cycloalkyl polyether, bis-N-aryl polyether bis-beta or alpha-amino acids or their salts, are produced for use as multifunctional corrosion inhibitors, which protect and prevent corrosion of ferrous metals exposed to acidic, basic and neutral liquids when transporting or storing crude oil and liquid fuels. The surfactants are also used to inhibit corrosion of equipment and pipes used in cooling systems in petroleum and petrochemical equipment. The Gemini surfactants have the structural formula:
Abstract:
High octane unleaded aviation fuel compositions having a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 210° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
To provide an aviation fuel oil composition which has excellent life cycle characteristics and achieves excellent specific fuel consumption. The aviation fuel oil composition according to the present invention includes: a first base which is a fraction having a boiling range of 140 to 280° C. obtained through a step of hydrotreating a first feedstock containing a sulfur-containing hydrocarbon compound and an oxygen-containing hydrocarbon compound derived from an animal or vegetable oil and fat or a second feedstock which is an oil blend of the first feedstock and a petroleum-based base obtained by refining a crude oil; and a second base which is a fraction having a boiling range of 140 to 280° C. obtained from a heavy oil cracking apparatus.
Abstract:
The present invention discloses a fuel composition useful for internal combustion engine having an Octane Number from 95 to 105 comprising: (a) an unleaded and devoid of organometal compounds base gasoline having an Octane Number (RON) from 90.1 to 103: (b) one or more aromatic amines selected in the group consisting of: (b1) 2,4-dialkylaniline, wherein the alkyl groups in position 2 and 4, independently one from the other, are selected in the group consisting of methyl, ethyl, n-propyl, iso-propyl, preferably both the alkyl groups in position 2 and 4 are methyl; (b2) N-Nitrosodiphenylamine. The process for preparing the above composition is also described along with the use of the aromatic amines selected between (b1) and (b2) and related mixtures for increasing the Octane Number.
Abstract:
Use in a gas oil fuel composition, which preferably comprises a Fischer-Tropsch derived fuel, of a compound according to formula (I): wherein: R1 to R5 are each independently hydrogen or a C1-10 alkyl group, where such alkyl groups may be the same as or different from one another; X is a nitrogen- or oxygen-containing group, for the purpose of reducing the cetane number of said fuel composition; preparation of such a fuel composition; and operating a fuel consuming system.
Abstract:
A synergistic combination antioxidant mixture that provides excellent characteristics for biodiesel fuel compositions, when incorporated therein.
Abstract:
Polyisobuteneamines of the general formula R1—CH2—NR2R3 in which R1 is a polyisobutyl radical which is derived from isobutene and up to 20% by weight of n-butene and has a number-average molecular weight Mn of from 600 to 770, and R2 and R3 are each independently hydrogen, a C1-C18-alkyl, C2-C18-alkenyl, C4-C18-cycloalkyl, C1-C18-alkylaryl, hydroxy-C1-C18-alkyl, poly(oxyalkyl), polyalkylenepolyamine or polyalkyleneimine radical or, together with the nitrogen atom to which they are bonded, are a heterocyclic ring are suitable as detergents in gasoline fuels, reduce valve sticking and improve the compatibility of the detergents with carrier oils and compatibility in fuel compositions which comprise a mineral fuel content and C1-C4-alkanols.
Abstract:
Reaction of a carboxylic acid-containing polymer with certain aromatic amines and polyols results in ester containing dispersant viscosity modifiers with improved soot handling performance in heavy-duty diesel engines, compared with non-ester containing dispersants.
Abstract:
Methods and compositions for improving stability of biodiesel fuel. The methods comprise adding to said biodiesel fuel, an effective amount of a combined treatment that includes a (I) hindered phenol and (II) a Mannich reaction product. The compositions comprise I and II dissolved or dispersed in an organic solvent.
Abstract:
A method of reducing the aggregation and deposition of asphaltene from a fluid containing asphaltene, such as crude oil, which method comprises the addition to the fluid of a compound of formula (I): wherein A is an optionally substituted ring system containing 6 to 14 carbon atoms; n is at least 1 and may equal the number of positions available for substitution in A; each X is independently a linker group; and each R is independently a hydrocarbyl group containing 10 to 25 carbon atoms.