Abstract:
A spectrophone assembly comprises a single detector chamber, a plurality of lasers, a gas inlet for supplying a gas sample to the single detector chamber, and at least one microphone. The detector chamber has an internal geometry arranged to be simultaneously acoustically resonant at a plurality of different resonant frequencies. Each laser operates at a different wavelength and is positioned to emit radiation into the single detector chamber, and is operable to emit radiation that is amplitude modulated at a frequency rate corresponding to a particular resonant frequency different from the resonant frequency of each other laser, simultaneously with each other laser. The microphone(s) are positioned in the single detector chamber so that each microphone is located at or near a maximum of a corresponding acoustic resonance defined by the internal geometry of the detector chamber.
Abstract:
In a wavelength modulation spectroscopy method for measuring the concentration of a gas component in a gas sample a portion of the light of a tunable light source is passed through a reference gas comprising the gas component in a constant concentration. Afterwards the light is detected by a reference detector. Another portion of the light is passed through the gas sample and thereafter to a measuring detector. The light emitted by the light source is modulated with a frequency fm, while the wavelength is swept over a molecular absorption line of the gas component. Demodulation of the detector outputs is made at a higher harmonic Nfm. In order to compensate for variations of the modulation parameters of the light source (2) in real time, a mathematical description of the demodulated reference detector output (S(υ)N,Ref) based on Fourier analysis of the modulated light (1) and on a mathematical expression for the absorption line is provided, said mathematical description comprising unknown modulation parameters with respect to the modulation of the light (1). Said modulation parameters are determined from the demodulated reference detector output (S(υ)N,Ref) and its mathematical description. In a further step the concentration (cMeas) is determined from the demodulated measuring detector output (S(υ)N,Meas), a corresponding mathematical description of it and the modulation parameters.
Abstract:
One system of the present invention includes a modulated light source subsystem to provide a first light signal with a first modulation index, and a second light signal with a second modulation index. The system also includes a region to receive an analyte for evaluation and direct the first light signal thereto, and a detector responsive to the second light signal and a third light signal from the region to provide an output representative of spectroscopic information. The third light signal further includes noise induced by residual amplitude modulation that is reduced at the detector by the second light signal in accordance with a difference between the first modulation index and the second modulation index.
Abstract:
A portable spectrophotometric system for detecting one or more target substances. In a representative embodiment, a system of the invention has an optical grating, an array of photo-detectors, and a MEMS device having a movable plate positioned between the grating and the array. Light transmitted through a gaseous sample is dispersed by the grating and is imaged onto the movable plate, which has a plurality of openings corresponding to selected infrared absorption lines of the target substance. A small-amplitude oscillation is imparted onto the plate such that the openings periodically move in and out of alignment with the corresponding intensity features in the image, which modulates electrical signals generated by the corresponding photo-detectors. A lock-in signal processor analyzes the modulation pattern by comparing it to the pattern expected in the presence of the target substance. When a positive correlation between the patterns is established, the system warns the user about the presence of the target substance.
Abstract:
A portable spectrophotometric system for detecting one or more target substances. In a representative embodiment, a system of the invention has an optical grating, an array of photo-detectors, and a MEMS device having a movable plate positioned between the grating and the array. Light transmitted through a gaseous sample is dispersed by the grating and is imaged onto the movable plate, which has a plurality of openings corresponding to selected infrared absorption lines of the target substance. A small-amplitude oscillation is imparted onto the plate such that the openings periodically move in and out of alignment with the corresponding intensity features in the image, which modulates electrical signals generated by the corresponding photo-detectors. A lock-in signal processor analyzes the modulation pattern by comparing it to the pattern expected in the presence of the target substance. When a positive correlation between the patterns is established, the system warns the user about the presence of the target substance.
Abstract:
An FT-IR toxic gas monitoring system and method for detection of one or more toxic gas species in a fluid environment containing or susceptible to presence of toxic gases. Such gas monitoring system includes: (1) a spectroscopic monitoring assembly for transmitting modulated infrared radiation through a spectroscopic cell that contains a gas sample from such fluid environment and generating a corresponding digitized spectrum characteristics of such gas sample for analysis; (2) a gas sampling and delivery subsystem for sampling the fluid environment and delivering the gas sample to the spectroscopic cell; and (3) a computational assembly (i) including a stored signal-to-noise ratio reference, and a stored background spectrum for the fluid environment when the toxic gas species is not present, and (ii) arranged to analyze the digitized spectrum and responsively produce an output indicative of quantitative presence of the toxic gas species in the fluid environment.
Abstract:
Disclosed is a measuring apparatus for a physical phenomenon by photoexcitation, in particular a delay time modulated and time-resolved, scanning probe microscope apparatus providing an ultimate resolution both temporal and spatial. The apparatus comprises an ultrashort laser pulse generator (2); a delay time modulating circuit (6) which splits an ultrashort laser pulse (3) produced by the ultrashort laser pulse generator (2) into two and which also modulates a delay time td between the two ultrashort laser pulses (4 and 5) with a frequency (ω); a scanning probe microscope (17); and a lock-in detection unit (8) which performs lock-in detection with the delay time modulation frequency (ω) of a probe signal (11) from the scanning probe microscope (17). It can detect the delay time dependency of the probe signal (11) as its differential coefficient to the delay time, with no substantial influence from fluctuations in the intensity of ultrashort laser pulses (3) while preventing the probe apex (19) from thermal expansion and shrinkage by repeated irradiation with ultrashort laser pulses (3). A photoexcited physical phenomenon dependent on a delay time between ultrashort laser pulses can thus be measured at a temporal resolution in the order of femtoseconds and at a spatial resolution in the order of angstroms.
Abstract:
The present method of processing spectral data calculates the first to fourth derivative spectra of an original spectrum with respect to the wavenumber and creates a two-dimensional representation by plotting coordinates consisting of the derivative values of some order as their abscissas and the original spectral values or derivative values of another order different from that order as their ordinates. In this two-dimensional plotting, maximal points, minimal points, maximal slope points (inflection points) and the like are clearly represented, so that a great amount of accurate feature information about the analyzed object can be easily obtained.
Abstract:
Provided is a novel chamber effluent monitoring system. The system comprises a chamber having an exhaust line connected thereto. The exhaust line includes a sample region, wherein substantially all of a chamber effluent also passes through the sample region. The system further comprises an absorption spectroscopy measurement system for detecting a gas phase molecular species. The measurement system comprises a light source and a main detector in optical communication with the sample region through one or more light transmissive window. The light source directs a light beam into the sample region through one of the one or more light transmissive window. The light beam passes through the sample region and exits the sample region through one of the one or more light transmissive window. The main detector responds to the light beam exiting the sample region. The system allows for in situ measurement of molecular gas impurities in a chamber effluent, and in particular, in the effluent from a semiconductor processing chamber. Particular applicability is found in semiconductor manufacturing process control and hazardous gas leak detection.
Abstract:
A spectroscopy method is defined in which a first source of radiation (51) emits a periodically pulsed beam (A) having a repetition frequency .omega. and in that a second source of radiation (52) emits a periodically pulsed beam (B) having a repetition frequency .omega.+.DELTA., the beams are united with each other and directed at a material specimen (6) to be analyzed and a detector means determines the amplitudes of the frequency components n.DELTA. of the beam emanating from the material specimen.