Abstract:
An electron source substrate including: a substrate; an electron-emitting device having a pair of device electrodes locating on the substrate and an electroconductive thin film which is provided between the device electrodes and has an electron-emitting region; and an antistatic film which is come into contact with at least the pair of device electrodes and covers over an exposed surface of the substrate, wherein a leakage current flowing between the device electrodes in a non-driving mode at a low voltage is suppressed. A high-impedance portion which obstructs the current caused across the pair of device electrodes through the antistatic film is provided in the antistatic film.
Abstract:
A method and associated structure for forming a free-standing electrostatically-doped carbon nanotube device is described. The method includes providing a carbon nanotube on a substrate in such a way as to have a free-standing portion. One way of forming a free-standing portion of the carbon nanotube is to remove a portion of the substrate. Another described way of forming a free-standing portion of the carbon nanotube is to dispose a pair of metal electrodes on a first substrate portion, removing portions of the first substrate portion adjacent to the metal electrodes, and conformally disposing a second substrate portion on the first substrate portion to form a trench.
Abstract:
A light emitting device that emits light of various colors by blending lights emitted by two or more kinds of fluorescent materials which are substantially directly excited by the light emitted by an excitation source having principal emission peak in a range from 250 nm to 500 nm. Each of the fluorescent material is of a direct-transition type.
Abstract:
A perpendicular magnetic recording medium, comprises a substrate; a soft-magnetic layer formed on the substrate; an NaCl-type oxide layer for orientation control formed on the soft-magnetic layer, having a thickness of from more than 0 to less than 10 nm; and a magnetic recording layer formed on the NaCl-type oxide layer for orientation control, comprising a maghemite thin film. Such a perpendicular magnetic recording medium is capable of showing excellent magnetic properties, a high recording resolution and improved surface properties.
Abstract:
On a printed circuit board, there are mounted a pair of first leads, a first semiconductor device mounted on each of the first leads, a pair of second leads, and a second semiconductor device mounted on each of the second leads. A semiconductor device connecting terminal portion of each of the first leads extends to an outer side from the first semiconductor device, and one end of an intermediate slope portion of each of the first leads is bent to an inner side, whereby a substrate connecting terminal portion is structured. Accordingly, since an entire length of each of the first leads is elongated, a stress is absorbed dispersedly, and a tape carrier package is made compact.
Abstract:
A novel field electron emitting device characterized in that a main portion of an electron emitting source for emitting electrons by an electric field is made of a carbon nanohorn. The field electron emitting device is high in electron emitting efficiency and excellent in productivity.
Abstract:
A surface light source device includes a body, a partition member, a first providing member and a visible light generating unit. The body includes a first substrate having first main and sub regions alternatingly formed with each other, and a second substrate having second main and sub regions facing the first main and sub regions, respectively. The partition member is interposed between the first and second sub regions to form discharge spaces between the first and second main regions. The partition member has a passage connecting between the discharge spaces. The first providing member is disposed on the passage, and the providing member provides the discharge space with operation gas. The visible light generating unit generates a visible light from the operation gas of the discharge spaces. Therefore, process of manufacturing the surface light source device is simplified to enhance productivity.
Abstract:
Disclosed is a barrier rib of a plasma display panel and forming method thereof, by which costs for fabricating the barrier rib are reduced and the fabricating method is simplified. The present invention includes forming a white paste layer on a glass substrate and forming a photosensitive black resist layer on the white paste layer, forming a photosensitive black resist pattern by patterning the photosensitive black resist layer, heating the photosensitive black resist pattern so that a wax component contained in the photosensitive black resist pattern diffuses inside the photosensitive black resist pattern, and removing a portion of the white paste layer failing to be covered with the photosensitive black resist pattern and plasticizing the photosensitive black resist pattern and the remaining photosensitive black resist pattern.
Abstract:
A plasma lamp including a waveguide body consisting essentially of at least one solid dielectric material. The body is coupled to a microwave power source which causes the body to resonate in at least one resonant mode. A lamp chamber integrated into the body contains a fill mixture which forms a light-emitting plasma when the chamber receives microwave power from the resonating waveguide body. The chamber has an aperture sealed to the external environment by a window or lens allowing light to be transmitted. Alternatively, the fill is in a self-enclosed bulb positioned in the chamber. Embodiments disclosed include lamps having a drive probe and a feedback probe, and lamps having a drive probe, feedback probe and start probe, which minimize power reflected from the body back to the source both before the plasma is formed and after it reaches steady state.