Abstract:
Method and reagent composition for covalent attachment of target molecules, such as nucleic acids, onto the surface of a substrate. The reagent composition includes groups capable of covalently binding to the target molecule. Optionally, the composition can contain photoreactive groups for use in attaching the reagent composition to the surface. The reagent composition can be used to provide activated slides for use in preparing microarrays of nucleic acids.
Abstract:
The invention relates to methods and apparatuses that reduce problems encountered during coating of a device, such as a medical device having a cylindrical shape. In an embodiment, the invention includes an apparatus including a bi-directional rotation member. In an embodiment, the invention includes a method with a bi-directional indexing movement. In an embodiment, the invention includes a coating solution supply member having a major axis oriented parallel to a gap between rollers on a coating apparatus. In an embodiment, the invention includes a device retaining member. In an embodiment, the invention includes an air nozzle or an air knife. In an embodiment, the invention includes a method including removing a static charge from a small diameter medical device.
Abstract:
Described are coating systems for the controlled delivery of hydrophilic bioactive agents, for example, from implantable medical devices. The coating systems of the invention comprise (a) a polymeric basecoat layer containing one or more hydrophilic bioactive agents; and (b) an elution-controlling topcoat layer that comprises a poly(ethylene-co-vinyl acetate) copolymer. The elution rate of the hydrophilic bioactive agent can be controlled by varying the vinyl acetate concentration in the elution-controlling topcoat layer.
Abstract:
The present invention relates to methods and components for increasing adhesion of an elution control matrix to a polymeric substrate, and medical devices including such components. In an embodiment, the invention includes a medical device including a substrate having a surface, the substrate comprising a polysiloxane, a parylene layer contacting the surface of the substrate, and an elution control matrix contacting the parylene layer, the elution control matrix comprising a polymeric matrix and an active agent dispersed within the polymeric matrix. Other embodiments are included herein.
Abstract:
Embodiments of the invention include multi-layered coatings for controlling the elution rates of active agents and methods. In an embodiment, the invention includes a method of applying an elution control coating to a substrate. The method can include depositing a coating solution onto the substrate to form a base layer. The method can also include selecting a desired concentration of the solvent based on a desired elution rate. The method can further include removing solvent from the base layer to reach a desired concentration of the solvent and depositing a layer of parylene on the base layer. In an embodiment, the invention can include a medical device including a substrate, a base layer, and a porous layer. The base layer can include a polymeric matrix and an active agent dispersed within the polymeric matrix. The porous layer can include parylene. Other embodiments are also included herein.
Abstract:
A coating composition in the form of a one or multi-part system, and method of applying such a composition under conditions of controlled humidity, for use in coating device surfaces to control and/or improve their ability to release bioactive agents in aqueous systems. The coating composition is particularly adapted for use with medical devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a first polymer component such as polyalkyl(meth)acrylate, polyaryl(meth)acrylate, polyaralkyl(meth)acrylate, or polyaryloxyalkyl(meth)acrylate and a second polymer component such as poly(ethylene-co-vinyl acetate).
Abstract:
A coating composition for use in coating implantable medical devices to improve their ability to release bioactive agents in vivo. The coating composition is particularly adapted for use with devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a mixture of a first polymer component such as poly(butyl methacrylate) and a second polymer component such as poly(ethylene-co-vinyl acetate).
Abstract:
A coating composition for use in coating implantable medical devices to improve their ability to release bioactive agents in vivo. The coating composition is particularly adapted for use with devices that undergo significant flexion and/or expansion in the course of their delivery and/or use, such as stents and catheters. The composition includes the bioactive agent in combination with a mixture of a first polymer component such as poly(butyl methacrylate) and a second polymer component such as poly(ethylene-co-vinyl acetate).
Abstract:
The invention provides a device for holding a substrate during deposition processes that includes a rotation member rotatable about a first, central axis, and a plurality of substrate holders positioned on the rotation member, the substrate holders being rotatable about second axes. In another aspect, the invention provides a method of applying a substantially uniform coating on a substrate including the steps of providing a device of the invention; mounting a substrate onto the substrate mounts; providing at least one substrate coating station in spaced relation to the substrate mounts; rotating the rotation member about a central axis to position one or more of the substrate mounts at the substrate coating station; supplying the coating through the nozzle; moving the nozzle of the coating station in a direction parallel to the substrate at a predetermined rate to apply a uniform coating on the substrate; and rotating the substrate mounts about the second axes during the coating process.
Abstract:
A process and apparatus for dip-coating intermediate and/or discrete discontinuous portions of longitudinal devices, including medical devices such as catheters and guidewires. The apparatus provides a chamber in which both the desired portion(s) of the device and the coating solution can be controllably contacted. A controlled coating can be achieved within the chamber by providing and controlling one or more of the following relationships: a) the manner in which a chamber (containing solution) is itself moved with respect to a static device, b) the manner in which the device is moved with respect to a fixed chamber position containing a fixed volume of solution, and/or c) the manner in which both the chamber and device are fixed in position, and the coating is achieved by adding and removing a volume of solution from the chamber. The resultant movement of solution and device is intended to mimic or replicate the relative movements involved in a conventional dip-coating procedure, at least along the length of device to be coated.