Abstract:
A microfluidic component comprises at least one closed microchannel filled with nanostructures. The microchannel is produced by previously forming an opening delineating a bottom wall and two opposite side walls of the microchannel in a surface of a substrate. The nanostructures filling said microchannel are formed by in situ growth to constitute a layer of metallic catalyst deposited on said side walls and on said wall bottom. The microchannel is closed, before the nanostructures are formed, by sealing a protective cover onto said surface of the substrate. Sealing is obtained by formation of an eutectic compound between a material of the cover and the metal of the catalyst used for in situ growth of the nanostructures and deposited on the surface of the substrate designed to come into contact with the cover.
Abstract:
A micro fluidic device comprises a laminate structure, comprising a plurality of individual layers. At least one layer comprises a micro fluidic channel structure and at least on one side of said layer a further layer is arranged comprising a three-dimensional (3D) micro structure such that the 3D micro structure is influencing a flow characteristic of a fluid within the micro fluidic channel structure.
Abstract:
Polymers, methods of use thereof, and methods of decomposition thereof, are provided. One exemplary polymer, among others, includes, a photodefinable polymer having a sacrificial polymer and a photoinitiator.
Abstract:
A method and system for transporting a fluid, gas, semi-solid, cryogen, or particulate matter, or combination thereof, between a three-dimensional structure and a substantially two-dimensional structure is disclosed. A system and method for electrically coupling a three-dimensional structure to a substantially two dimensional structure is also disclosed.
Abstract:
A method of forming an integrated circuit structure includes forming an opening in a substrate, with the opening extending from a top surface of the substrate into the substrate. The opening is filled with a filling material until a top surface of the filling material is substantially level with the top surface of the substrate. A device is formed over the top surface of the substrate, wherein the device includes a storage opening adjoining the filling material. A backside of the substrate is grinded until the filling material is exposed. The filling material is removed from the channel until the storage opening of the device is exposed.
Abstract:
A method of making a microfluidic diagnostic device for use in the assaying of biological fluids, whereby a layer of adhesive in a channel pattern is printed onto a surface of a base sheet and a cover sheet is adhered to the base sheet with the adhesive. The layer of adhesive defines at least one channel, wherein the channel passes through the thickness of the adhesive layer.
Abstract:
In an aspect, the present invention uses projection micro stereolithography to generate three-dimensional microvessel networks that are capable of supporting and fostering growth of a cell population. For example, provided is a method of making a microvascularized bioreactor via layer-by-layer polymerization of a photocurable liquid composition with repeated patterns of illumination, wherein each layer corresponds to a layer of the desired microvessel network. The plurality of layers are assembled to make a microvascular network. Support structures having different etch rates than the structures that make up the network provides access to manufacturing arbitrary geometries that cannot be made by conventional methods. A cell population is introduced to the external wall of the network to obtain a microvascularized bioreactor. Provided are various methods and related bioreactors, wherein the network wall has a permeability to a biological material that varies within and along the network.
Abstract:
A microfluidic circuit element comprising a microfluidic channel, in which the microfluidic channel has nano interstices formed at both sides thereof and having a height less than that of the center of the channel, gives more driving force of the microfluidic channel and provides stable flow of a fluid.
Abstract:
Provided are a microchip formed by joining a resinous film onto a resinous substrate, which enables the prevention of a leak due to peeling of a peripheral portion and prevention of deformation and clogging of a microchannel, and a method for manufacturing the same. The microchip comprises a resinous substrate including a first surface in which a channel groove is formed and a second surface on the side opposite to the first surface, and a resinous film joined to the first surface of the resinous substrate. A joint plane between the resinous substrate and the resinous film is composed of a central area including an area in which the channel groove is formed and a peripheral area corresponding to the outer periphery of the central area, the joint strength between the resinous substrate and the resinous film in the central area is larger than 0.098 N/cm, and the joint strength in at least part of the peripheral area of the joint plane is larger than the joint strength in the central area.
Abstract:
An integrated flow cell, the flow cell comprising a semiconductor substrate, and a fluidic conduit having an at least partially transparent semiconductor oxide tubing, wherein the semiconductor oxide tubing is formed with the semiconductor substrate.