Abstract:
The present disclosure relates to the field of sensor manufacturing technology, particularly discloses a method for manufacturing a micro-sensor body, comprising the steps of S1: applying a wet colloidal material on a substrate to form a colloidal layer, and covering a layer of one-dimensional nanowire film on the surface of the colloidal layer to form a sensor embryo; S2: drying the colloidal layer of the sensor embryo to an extent that the colloidal layer cracks into a plurality of colloidal islands, a portion of the one-dimensional nanowire film contracting into a contraction diaphragm adhered to the surface of the colloidal islands while the other portion of the one-dimensional nanowire film being stretched into a connection structure connected between the adjacent contraction diaphragms. By the method for manufacturing a micro-sensor body of the present disclosure, the contraction diaphragms and connection structures formed by stretching the one-dimensional nanowire film are connected stably, which enhances the stability of the sensor devices; and the cracking manner renders it easy to obtain a large-scale of sensor bodies with connection structure arrays in stable suspension.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
In one embodiment, a method of forming a semiconductor device includes providing a substrate, forming a sacrificial layer above the substrate layer, forming a first trench in the sacrificial layer, forming a first sidewall layer with a thickness of less than about 50 nm on a first sidewall of the first trench using atomic layer deposition (ALD), and removing the sacrificial layer.
Abstract:
In a thin film device including a thin film electrode which has a main electrode layer formed of tungsten, a thin film electrode having a low resistivity is realized. There is provided a thin film device including a thin film electrode that has an underlayer and a main electrode layer formed on the underlayer. The underlayer is formed of a titanium-tungsten alloy having a crystalline structure with a wavy-like surface morphology, and the main electrode layer is formed of tungsten having a crystalline structure with a wavy-like surface morphology.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
The object, to create a method for producing multilayers or multilayer systems wherein the structures generated on a substrate can easily be jointly detached from the substrate and are preserved in a composite, is achieved by the present invention by means of a method for producing implant structures comprising generating a first metal layer on a substrate, generating a second metal layer above the first metal layer, producing a number of multilayered implant structures above the second metal layer, removing the first metal layer between the substrate and the second metal layer, and releasing the implant structures from the substrate in a coherent composite. With the method according to the invention, between the implant structures and the substrate a release layer is generated consisting of two or three metal layers which serve as sacrificial layer in the course of releasing the fully processed multilayers by means of an under-etching process. As a result, a uniform and reliable separation of the finished multilayers from the substrate in a composite is achieved, facilitating the subsequent technology for assembly and interconnection of the implant structures.
Abstract:
The present invention relates to a method of manufacturing a semiconductor device by which the length of nanowires perpendicularly formed can be fabricated with high reproducibility. The method of manufacturing a semiconductor device includes the steps of forming a first layer; forming a stop layer on the first layer, the stop layer having a higher Young's modulus than the first layer; forming a recess by partially removing the first layer and the stop layer; growing nanowires in the recess; forming a planarizing layer; removing the planarizing layer to the level of the stop layer to expose the nanowires from the surface of the planarizing layer; and forming an electrode so as to be in contact with the upper ends of the nanowires.
Abstract:
Organic anti-stiction coatings such as, for example, hydrocarbon and fluorocarbon based self-assembled organosilanes and siloxanes applied either in solvent or via chemical vapor deposition, are selectively etched using a UV-Ozone (UVO) dry etching technique in which the portions of the organic anti-stiction coating to be etched are exposed simultaneously to multiple wavelengths of ultraviolet light that excite and dissociate organic molecules from the anti-stiction coating and generate atomic oxygen from molecular oxygen and ozone so that the organic molecules react with atomic oxygen to form volatile products that are dissipated, resulting in removal of the exposed portions of the anti-stiction coating. A hybrid etching process using heat followed by UVO exposure may be used. A shadow mask (e.g., of glass or quartz), a protective material layer, or other mechanism may be used to selective expose the portions of the anti-stiction coating to be UVO etched. Such selective UVO etching may be used, for example, to expose wafer bond lines prior to wafer-to-wafer bonding in order to increase bond shear and adhesion strength, to expose bond pads in preparation for electrical or other connections, or for general removal of anti-stiction coating materials from metal or other material surfaces. One specific embodiment uses two wavelengths of ultraviolet light, one at around 184.9 nm and the other at around 253.7 nm.