Abstract:
The present invention relates to an optical fiber preform fabricating method that makes it possible to implement a reduction in iron impurities at a low cost. The optical fiber preform fabricating method comprises a glass synthesis step for forming a glass region constituting at least a part of the core area of the optical fiber. The glass synthesis step includes a deposition step of depositing glass particles containing the Al-element inside the glass pipe by means of chemical vapor deposition, and a consolidation step of obtaining a transparent glass body from the glass soot body thus obtained. In other words, the deposition step synthesizes glass particles on the inside wall of a glass pipe by feeding raw material gas, in which the content ratio (O/Al) of the O-element and Al-element is 20 or less, into the glass pipe. Furthermore, the consolidation step obtains a transparent glass body from the glass soot body by heating the glass soot body. The transparent glass body that is formed in the consolidation step constitutes part of the core region.
Abstract:
Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 50 and 500 ppm by weight, said core further comprising chlorine and fluorine, wherein the average concentration of fluorine in said core is greater than the average concentration of alkali metal oxide in said core and the average concentration of chlorine in said core is greater than the average concentration of alkali metal oxide in said core; and a silica-based cladding surrounding and directly adjacent the core. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained.
Abstract:
A charged glass raw material B is melted in a melting tank 10 by heating with a burner 31 and by heating with electrodes 12, to form molten glass G. Then, the molten glass G flows into a tank additionally provided as a noble gas dissolving tank 20 through a throat 40. The noble gas dissolving tank 20 is provided with a noble gas dissolving device 53, and the noble gas dissolving device 53 is provided with sixteen noble gas inlets 22 for introducing a helium or neon gas supplied to a hearth through heat resistant gas introduction tubes 21 into the noble gas dissolving tank 20. Bubbles of a helium gas A having a purity of 99% are blown out from the noble gas inlets 22 in volumes such that the bubbles have an average diameter of 80 mm or less in the molten glass G.
Abstract:
Disclosed is an optical fiber having a silica-based core comprising an alkali metal oxide a silica-based core, said core comprising an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof in an average concentration in said core between about 50 and 1000 ppm by weight, and a silica-based cladding surrounding and directly adjacent the core, said fiber comprising a cable cutoff less than 1400 nm chromatic dispersion at 1550 nm between about 13 and 19 ps/nm/km and a zero dispersion wavelength less than about 1324 nm. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained.
Abstract:
A radiation resistant single-mode optical fiber has a core and a cladding, each made of fluorine-doped silica glass, in which a chlorine concentration of the core is at least 0.01 ppm, a relative refractive index difference of the core based on the refractive index for silica is between −0.30 and −0.10%, a relative refractive index difference of the core based on the refractive index for the cladding is between 0.3% and 0.5%, a cutoff wavelength is 1.27 μm or below, and a bending loss at a wavelength of 1.3 μm and a bending diameter of 20 mm is 0.5 dB/m or less.
Abstract:
The invention is directed to ultra-low expansion glasses to which adjustments have been made to selected variables in order to improve the properties of the glasses, and particularly to lower the expansivity of the glasses. The glasses are titania-doped silica glasses. The variables being adjusted include an adjustment in β-OH level; an adjustment to the cooling rate of the molten glass material through the setting point; and the addition of selected dopants to impact the CTE behavior.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
An optical fiber comprising a core region 100 doped with Cl which raises the refractive index; and a cladding region 200, provided at the outer periphery of the core region 100, having a cladding layer 201 doped with F which lowers the refractive index is formed. The cladding region 201 to become the outermost cladding layer is configured such that the doping amount of F successively decreases within an outer peripheral part 205 including the outer periphery thereof to a predetermined doping amount which is the minimum doping amount of F within the cladding layer 201. Therefore, the stress within the optical fiber is dispersed into the outer peripheral part 205 having an enhanced viscosity, whereby the stress concentration into the core is suppressed. Since the favorable tension range at the time of drawing the optical fiber becomes wider at this time, tension control is facilitated.
Abstract:
A method for producing a quartz glass material with high resistance to radiation-induced density modifications when exposed to ultraviolet radiation at about 193 nm and energy densities of the order of the working energy densities of optical systems for microlithography, in which the peroxy defect level in the quartz glass material is minimized. In this way the creation of closely neighbored hydroxyl groups can be inhibited, which have been identified as an essential cause for radiation induced density reduction of the quartz glass material.